Buchi neri vs Stelle di neutroni

Alcune stelle di neutroni possono essere decisamente le rivali dei buchi neri per quanto riguarda il meccanismo di accelerazione dei getti di materia fino a velocità relativistiche. È quanto emerge da uno studio condotto da alcuni astronomi che hanno utilizzato l’interferometro radio Very Large Array (VLA). I risultati sono riportati su Astrophysical Journal. «E’ un fatto sorprendente e ci dice che qualcosa che non sospettavamo prima sta accadendo in alcuni sistemi binari composti da una stella di neutroni e da una normale stella compagna», spiega Adam Deller di ASTRON, l’istituto olandese di radioastronomia, e autore principale dello studio. I buchi neri e, a seguire, le stelle di neutroni sono le forme di materia più dense che conosciamo nell’Universo. Nei sistemi binari dove questi straordinari oggetti orbitano attorno ad una stella ordinaria (la compagna), il gas può propagarsi da quest’ultima verso l’oggetto compatto, producendo spettacolari e potenti getti di materia che si propagano nello spazio a velocità prossime a quella della luce. Prima, sapevamo che i buchi neri erano i “re indiscussi” della formazione di potenti getti relativistici. Anche quando si considera una minima quantità di materia, l’emissione radio che traccia il flusso del getto emergente dal buco nero appare ancora brillante. A confronto, le stelle di neutroni sembra che producano getti relativamente più sottili, anche se l’emissione radio risulta abbastanza brillante da permette di vedere come esse catturano il materiale dalla loro compagna a un tasso molto elevato. Ciò ha portato gli astronomi a pensare che una stella di neutroni, mentre consuma “senza fretta” il materiale dalla compagna, formi solamente getti molto deboli per essere rivelati. Ma di recente, una serie di osservazioni combinate radio e X della stella di neutroni PSR J1023+0038 hanno completamente rovesciato questo pensiero. L’oggetto, osservato nel 2009 dall’astronoma Anne Archibald di ASTRON, è il prototipo di una cosiddetta “pulsar millisecondo transiente”, cioè una stella di neutroni che trascorre la sua vita in uno stato di non-accrescimento che occasionalmente cambia passando ad una fase di accrescimento. Quando è stata osservata nel 2013 e poi nel 2014, la stella di neutroni stava accrescendo solo una minuscola quantità di materia e perciò avrebbe prodotto un getto molto debole. «Sorprendentemente, le nostre osservazioni radio con il VLA hanno mostrato una emissione radio relativamente forte, indicando la presenza di un getto la cui intensità è quella che ci aspettiamo nel caso di un buco nero», dice Deller. Finora si conoscono altri due sistemi “transienti” che esibiscono potenti getti radio simili a quelli prodotti dalle controparti dove sono presenti i buchi neri. La domanda è: che cosa rende speciali questi sistemi transienti rispetto alle altre stelle di neutroni? Per rispondere a questa domanda, Deller e colleghi stanno programmando ulteriori osservazioni di sistemi transienti noti per affinare i modelli teorici relativi al processo di accrescimento.
di Corrado Ruscica (INAF)

Chandra studia Sagittarius A*

Perché stare a dieta quando potresti tranquillamente mangiare tutto quello che ti capita a tiro? Eppure è proprio quello che sembra fare il buco nero supermassiccio che si trova al centro della nostra galassia, chiamato dagli astronomi Sagittarius A*, o più brevemente Sgr A*. In teoria il buco nero (per ovvi motivi il più facile da studiare tra i buchi neri supermassicci che si trovano al centro della maggior parte delle galassie) dovrebbe divorare, con la sua attrazione gravitazionale, qualunque oggetto si trovi nelle sue vicinanze. Eppure l’emissione radio dalla zona circostante il buco nero (causata proprio dal suo accrescimento, cioè dalla caduta di materiale al suo interno) è sorprendentemente debole, e la stessa cosa avviene anche per altri buchi neri individuati al centro di altre galassie. “E’ sempre stato un mistero perché la maggior parte di questi buchi neri abbiano un’emissione così debole” spiega Daniel Wang, un astrofisico dell’Università del Massachusetts. Sull’ultimo numero di Science, Wang e il suo gruppo danno un importante contributo alla soluzione del mistero. L’emissione di raggi X proveniente da Sgr A* si può descrivere, come mostrano Wang e colleghi, come la sovrapposizione di una sorgente puntiforme (il buco nero stesso) e di una nuvola molto più ampia, al cui interno si possono identificare più di cento stelle, e presupporne un altro migliaio troppo deboli per essere rilevate. Molte di queste stelle sputano fuori gas caldo sotto forma di venti stellari, che in teoria dovrebbero essere risucchiati dal buco nero. Sempre in teoria, questo dovrebbe portare a un accrescimento del buco nero pari a circa un centomillesimo della massa solare ogni anno. E questo fenomeno dovrebbe rendere la regione immediatamente attorno al buco nero molto, molto più brillante di quanto effettivamente sia. Che succede in realtà? Per rispondere, i ricercatori hanno utilizzato il satellite per lo studio dei raggi X della NASA Chandra, in grado di compiere osservazioni in raggi X con una risoluzione angolare maggiore di qualunque altro strumento attualmente disponibile. Grazie ad esso hanno studiato la zona circostante il buco nero Sgr A*, riuscendo a distinguere le diverse sorgenti che emettono raggi X (il buco nero di per sé è, per l’appunto, nero, e da esso non esce alcuna radiazione) e la temperatura e densità dei gas nella parte centrale della galassie. In questo modo hanno capito che nelle immediate vicinanze del buco nero vi sono, oltre a stelle di piccola massa, anche molte stelle di grande massa. Queste stelle sono associate a venti molto potenti e veloci, che causano vortici e perturbazioni con l’effetto di riscaldare molto il gas nelle vicinanze del buco nero. Il tutto è compatibile con alcuni modelli teorici di accrescimento, secondo cui il gas a queste alte temperature diventa più difficile da “ingoiare” per il buco nero, con il risultato che circa il 99 per cento di esso viene risputato nello spazio. Solo una piccola parte finisce effettivamente all’interno del buco nero. Una dieta di gas più freddi, spiega Wang, permetterebbe al buco nero di accrescere a un ritmo molto più elevato, ma l’ambiente non lo consente.
di Nicola Nosengo (INAF)