Com’è profondo il mare di Titano

Distante dal Sole circa un miliardo e mezzo di km, Titano – gelido satellite naturale di Saturno – si presenta avvolto da una foschia dorata di azoto gassoso. Tuttavia, secondo la Nasa, sbirciando attraverso le sue fitte nuvole il paesaggio lunare di Titano non apparirebbe così dissimile da quello della Terra, con fiumi, laghi e mari. Non di acqua, però, ma di metano liquido. Già da qualche anno i ricercatori hanno stimato le profondità di questi mari di idrocarburi – analizzando i dati prodotti dall’altimetro radar della sonda Cassini, acquisiti prima della fine della missione, nel 2017 – ad eccezione di quella del più grande di tutti: il Kraken Mare, dove è raccolto circa l’80 per cento dei liquidi superficiali di Titano. Ora una nuova analisi (i cui risultati sono stati pubblicati il 4 dicembre scorso sul Journal of Geophysical Research), tenendo conto della differenza fra i tempi di ritorno delle onde radar rimbalzate dalla superficie e dal fondo del mare, nonché della quantità di energia assorbita dal liquido, è riuscita a stabilire che la profondità – nella regione centrale – deve superare i 300 metri, e che il liquido è compatibile con un cocktail di metano, azoto ed etano. Media Inaf ha raggiunto Valerio Poggiali, primo autore dello studio. Giovane ingegnere delle telecomunicazioni originario di Ostia (Roma), Poggiali è da sempre appassionato di spazio, e da quattro anni è ricercatore al Center for Astrophysics and Planetary Science della Cornell University, a Ithaca (New York).

Per certi aspetti Titano sembra somigliare molto alla Terra. Quali sono, secondo lei, le caratteristiche più interessanti di questo mondo?

«Sono felice che abbia usato il temine ‘mondo’ per indicarlo. Quando sento dire, giustamente, che Titano è soltanto una luna di Saturno mi dispiace un po’. A mio avviso, Titano è di gran lunga il corpo celeste più interessante del sistema solare dopo il nostro pianeta. Il raggio di Titano è maggiore di quello del pianeta Mercurio ed è l’unica luna a possedere un’atmosfera. La temperatura sulla superficie della Terra oscilla intorno al punto triplo dell’acqua (0 °C) ed è per questo che troviamo questo elemento in tutti e tre i suoi stati fondamentali: solido, liquido e gassoso. La temperatura della superficie  di Titano è di -182 °C, ossia il punto triplo del metano, che si trova in abbondanza nella sua atmosfera e sulla sua superficie in tutti e tre i suoi stati fondamentali. Le molecole del metano, distrutte dai raggi ultravioletti del Sole, vanno poi a produrre una miriade di altre sostanze simili: etano, butano, propano, eccetera. Questi elementi piovono sulla superficie come pioggia, scorrono in fiumi e riempiono laghi e mari. Corpi liquidi che si trovano oggi limitatamente ai poli di Titano – Kraken, Ligeia, Punga Mare al nord, e Ontario Lacus al sud – e abbiamo scoperto essere fatti di azoto (componente principale dell’atmosfera come sul nostro pianeta), metano ed etano».

Un po’ come accade per il ciclo dell’acqua sulla Terra…

«Diciamo che l’etano si comporta un pochino come il sale nei nostri mari, che si può trovare in diverse concentrazioni in giro per il mondo. Un altro aspetto strabiliante di Titano sono gli altri suoi “mari”, questa volta fatti di “sabbia” che avvolgono tutto il suo equatore da -30° a +30° di latitudine, interrotti solo dalla regione di Xanadu. Una sabbia speciale composta da granelli di ghiaccio e plastica».

Come siete riusciti a ottenere tutti questi dati?

«Tutti questi dati sono stati raccolti dalla sonda Cassini, e in particolare dal suo radar. La missione Cassini nasce all’inizio degli anni Novanta dalla collaborazione di Asi, Esa e Nasa. Oserei dire che il radar di Cassini è il figlio della mente geniale di due uomini in particolare: Charles Elachi, ex direttore del Nasa/Jpl, e Giovanni Picardi della Sapienza Università di Roma, il maggior esperto di radar che il nostro Paese abbia mai avuto, e che ha speso tanti anni nella ricerca dell’acqua su Marte con il suo radar Marsis, che ancora oggi osserva il Pianeta rosso a bordo della sonda Mars Express. Picardi ci ha lasciato da pochi anni, ma per mia fortuna ho potuto conoscerlo presso il laboratorio radar del Dipartimento di ingegneria dell’informazione, elettronica e telecomunicazioni della Sapienza insieme anche ad altri grandi scienziati, come Roberto Seu e Marco Mastrogiuseppe, che mi hanno seguito durante la mia tesi di dottorato sul radar altimetro di Cassini e mi hanno permesso di sviluppare quella serie di conoscenze che oggi mi permettono di iniziare a capire un po’ meglio come funziona questo tipo di strumento».

Dunque, là dove i sensori ottici non riescono ad arrivare, le radiofrequenze possono rivelarsi un valido supporto per la ricerca…

«Il radar è assolutamente essenziale per lo studio di quelle superfici terrestri e planetarie, come quella di Titano, coperte costantemente da nuvole o foschie, permettendone la descrizione in termini di composizione e rugosità. Per il nostro studio dei mari di Titano abbiamo puntato il radar perpendicolarmente alla superficie e abbiamo mandato un segnale. Ci siamo poi messi in attesa del suo ritorno per osservare come ne era cambiata la forma e l’intensità. Quello che abbiamo ricevuto è stata una prima riflessione dalla superficie del mare e una seconda dal fondo. Misurando il tempo di ritardo fra i due segnali siamo stati in grado di dire quanto profondo fosse il mare e dall’attenuazione del secondo di essi abbiamo potuto stimare la composizione del mezzo liquido attraversato. Dunque, mentre nella baia del Kraken Mare – chiamata Moray Sinus – abbiamo ricevuto un segnale da 85 m di profondità e abbiamo rilevato una composizione di 70 per cento di metano, 16 per cento di azoto, and 14 per cento di etano, nella parte centrale del Kraken Mare non abbiamo ricevuto alcun segnale, segno che il mare era troppo profondo o il liquido troppo assorbente. Quindi, ipotizzando che la composizione sia simile fra questi due bracci di mare contigui, abbiamo potuto concludere che la parte centrale del Kraken Mare deve essere più profonda di 100 m e probabilmente più profonda di 300 m».

Perché è importante comprendere le caratteristiche del più grande mare di Titano?

«Comprendere le caratteristiche del Kraken Mare e del Moray Sinus è importante perché ci permette di stabilire quante e quali sostanze siano presenti sulla superficie e ci permette di capire meglio l’idrologia del metano su Titano».

Ci sono degli aspetti che restano ancora irrisolti?

«Ad oggi non sappiamo dove finisca tutto l’etano che si forma nell’atmosfera in grandi quantità dalla distruzione del metano. Forse sotto la superficie? Non lo sappiamo. Oppure ancora, cosa permette al metano di rigenerarsi continuamente da milioni di anni senza esaurirsi mai? Un altro mistero. Speriamo che Dragonfly, la nuova missione proposta dalla Nasa, ci aiuti a capire qualcosa di più».

Dragonfly sorvolerà il suolo di Titano come un drone. Pensa che in futuro sarà possibile anche esplorarne gli abissi? 

«Sono sicuro che nel futuro saremo in grado di inviare un sottomarino con strumenti quali una macchina fotografica, un sonar, uno spettrometro di massa e una piccola stazione meteorologica (vento, temperatura, umidità relativa). Per ora sono state proposte solamente delle sonde marine (praticamente delle boe dotate di strumentazione) e prevedo che i veri e propri sottomarini rappresenteranno la prossima generazione di proposte, dato che per ora sono ancora soltanto dei concetti avanzati in fase di sviluppo e, di fatto, non sono ancora pronti per essere proposti». Media Inaf

Strutture gigantesche intorno ai laghi di Titano

L’eredità della missione Cassini-Huygens di Nasa, Esa e Asi continua a fornire agli scienziati preziosi spunti di ricerca. Disintegratasi il 15 settembre 2017 nell’atmosfera di Saturno durante il ‘gran finale’, la sonda ha raccolto importanti dati dalle regioni polari di Titano. Un gruppo internazionale di ricercatori ha utilizzato queste osservazioni per individuare i cosiddetti bastioni: strutture gigantesche che circondano alcuni laghi sulla luna saturniana e si estendono nell’entroterra per decine di chilometri. Questi bastioni sono morfologicamente diversi dalle sponde che normalmente si trovano in prossimità dei laghi: esse, infatti, si ergono ripide sopra la superficie del lago, al massimo sono larghe un chilometro e non lo circondano mai completamente. Per comprendere l’origine e i meccanismi della loro formazione, gli studiosi hanno analizzato le immagini fornite dalla sonda Cassini e provenienti da due strumenti: il Vims (Visual Infrared Mapping Spectometer) per i dati spettroscopici della superficie di Titano, e il Sar (Synthetic Aperture Radar) per quelli morfologici. «La formazione dei laghi di Titano e delle strutture che li circondano rimane una questione aperta», riferisce Anezina Solomonidou, ricercatrice all’Esac di Madrid e autrice principale dello studio, i cui risultati sono stati pubblicati su Icarus. «I bastioni possono custodire importanti indizi su come le regioni polari di Titano ricoperte da laghi siano diventate quelle che vediamo oggi.» Per la prima volta i ricercatori hanno sovrapposto le immagini fornite da Vims a quelle elaborate da Sar. In questo modo hanno potuto determinare le caratteristiche fisiche dei bastioni e ricavare nuove ipotesi circa la loro struttura. In totale l’analisi è stata condotta su otto laghi, tre di essi asciutti e cinque riempiti da un liquido che si ritiene essere composto da una mistura di metano liquido ed etano con un contributo di azoto. La superficie dei laghi varia da 30 a 670 chilometri quadrati e i bastioni, la cui larghezza varia da 3 a 30 chilometri, si innalzano per 200-300 metri sul terreno circostante. I risultati delle analisi spettrali mostrano che l’emissività dei bastioni è relativamente alta per gli standard di Titano ed è molto simile a quella dei fondali dei laghi vuoti e ai labirinti di terreno di origine fluviale. Questo suggerisce che i bastioni condividono con i fondali dei laghi lo stesso meccanismo di formazione, mentre hanno la medesima composizione organica dei labirinti fluviali. Un’altra caratteristica che rende unici i bastioni è quella di circondare completamente i laghi, una differenza fondamentale con i più comuni bordi ripidi. «Mentre i bordi e altre strutture sono stati logorati e si sono rotti nel corso del tempo, i bastioni circondano completamente i loro laghi. Questo ci aiuta a vincolare gli scenari in cui essi si sono formati», commenta Alice Le Galle dei laboratori Latmos di Parigi, co-autrice della ricerca. Sebbene non si conosca l’esatto meccanismo di formazione di bastioni e sponde, il lavoro di Solomonidou e colleghi suggerisce almeno due diversi scenari. Nella prima ipotesi si ritiene che, dopo la formazione del lago, un meccanismo geofisico posizioni il bastione attorno al perimetro del lago. Successivamente, lo stesso meccanismo innalza un bordo sopra il bastione. Poiché il bordo è più giovane del bastione, il materiale di cui è composto non ha avuto modo di diventare più resistente e quindi viene eroso dagli agenti atmosferici. Nel secondo scenario si ipotizza che, dopo la formazione e la crescita del bacino lacustre, il materiale residuo vada a formare dapprima le sponde del lago e poi, attraverso la sedimentazione, anche i bastioni. Ciò significherebbe che i laghi circondati da tali strutture sarebbero tra i più giovani di Titano, perché non ci sarebbe stato il tempo sufficiente affinché i bastioni venissero erosi. «È difficile stabilire quale sia l’esatto meccanismo attraverso cui i bastioni si formano», ammette Solomonidou. Tuttavia, grazie all’analisi combinata di più strumenti, questo lavoro è di grande aiuto per le future missioni spaziali che mirano all’esplorazione di mondi ghiacciati come Titano. Una di queste – Juice (Jupiter Icy moons Explorer) dell’Esa, il cui lancio è previsto per il 2022 – visiterà le tre lune più grandi di Giove: Ganimede, Callisto ed Europa. Anche se strutture come laghi e bastioni non sono stati osservati nei satelliti gioviani, saperne di più a proposito di Titano aggiunge un ulteriore mattoncino alla conoscenza delle lune ghiacciate del Sistema solare. di Marco Dian (INAF)

Titano, un tesoro prebiotico anche senza acqua

Titano, la più grande luna di Saturno, è il corpo tra tutti quelli nel Sistema solare più promettente per ospitare la vita (anche più di Marte dove però ci sono tracce di acqua). Da anni la comunità scientifica cerca di provare che su questo satellite (fuori dalla fascia di abitabilità del Sistema solare) si possono sviluppare forme di vita magari microbiche tra i gelidi idrocarburi che compongono la sua superficie. Studiando le informazioni sulla chimica di Titano raccolte dalla missione NASA/ESA/ASI Cassini-Huygens, un gruppo di ricercatori della Cornell University ha suggerito infatti che potrebbero esserci condizioni chimiche prebiotiche (che in parole povere vuol dire: c’è una speranza di vita anche lì!). Titano è un corpo “simile” alla Terra, perché presenta laghi, fiumi, mari e terreni che – in teoria – possono essere paragonati a quelli a cui noi siamo abituati. Un piccola (siamo ironici) differenza è che lì – a circa 1,4 miliardi di chilometri di distanza da noi – si raggiungono i -180 gradi centigradi e che i suoi oceani sono composti da metano liquido (non c’è infatti traccia di acqua neanche a pagarla oro!). Titano presenta, inoltre, una spessa e tossica atmosfera (che appare gialla) composta da azoto e metano. Di certo l’aria non è respirabile (almeno per noi terrestri), ma quando la luce solare colpisce l’atmosfera la reazione produce acido cianidrico (HCN), che è una delle chiavi chimiche prebiotiche. Martin Rahm, il primo autore dello studio, ha spiegato che questo «è solo il punto di inizio nella ricerca di chimica prebiotica al di fuori della Terra», ma bisogna cercare di estraniarsi dal concetto di vita terrestre e ampliare le nostre vedute perché «Titano è una “bestia” completamente differente». L’acido cianidrico è una sostanza chimica ritenuta cruciale anche per lo sviluppo della vita sulla Terra e quindi all’origine degli aminoacidi e degli acidi nucleici. Le molecole di HCN reagiscono tra di loro o con altre molecole formando dei polimeri (lunghe catene di molecole) uno dei quali è noto come polimina (polyimine) che potrebbe resistere alle estreme temperature di Titano e permettere la creazione della vita. «La polimina può esistere come strutture diverse, e può essere in grado di fare cose notevoli alle basse temperature, soprattutto nelle condizioni che ci sono su Titano», ha aggiunto Rahm. «Dobbiamo continuare a studiarlo per capire come la chimica evolve nel tempo. Se osservazioni future mostrassero condizioni prebiotiche in un posto come Titano, sarebbe un importante risultato scientifico. Questo studio indica che potrebbero esistere i presupposti per l’esistenza di processi che portano a un diverso tipo di vita sul pianeta, ma è solo il primo passo».

Titano: oceano di metano purissimo

Bollettino rosso sull’autostrada celeste per Titano. Weekend di esodo da caro benzina. Tutti al mare – Ligeia Mare – a fare il pieno di… metano.
Nessuna ribalderia giornalistica. Nessuna bufala. Su Titano un mare di carburante esiste davvero. Anzi: è l’intera superficie a essere ricoperta da giganteschi bacini di idrocarburi allo stato liquido. Quello che non sapevamo è che uno di essi, il Ligeia Mare di cui sopra, è stato scoperto contenere metano purissimo. Siete proprietari di un’auto ibrida? È il vostro momento!
Si scherza, d’accordo. Ma il fascino di questa lontana luna di Saturno lascia davvero a bocca aperta. Pensate: di tutte le lune del Sistema solare, Titano è l’unica a possedere una spessa atmosfera e grandi laghi e oceani sulla sua superficie. Cosa che, va detto, a prima vista lo rende di gran lunga il corpo più simile alla nostra Terra. Anche qui l’azoto è abbondante nell’atmosfera. Manca però l’ossigeno: è quasi tutto metano quel che resta del cielo di Titano (vedi MediaINAF). Qui da noi siamo abituati a vederlo in forma gassosa, ma alle temperature proibitive raggiunte a tanta distanza dal Sole, ecco il metano raggiunge lo stato liquido e “piove” sulla superficie della luna di Saturno raccogliendosi in pozze, laghi e mari.
Vicino al polo nord della luna si trovano tre grandi bacini, circondati da decine di piccoli laghetti. Mentre nell’emisfero meridionale del satellite è stato individuato un solo lago. Da quando la sonda Cassini è arrivata dalle parti di Saturno nel 2004 sono molte le ipotesi che sono state avanzate sull’origine e la distribuzione degli idrocarburi allo stato liquido sulla superficie di Titano. Ma l’esatta composizione di questi oceani alieni è stata sempre ignorata.
Fino a ieri. Servendosi delle scansioni radar della sonda NASA/ESA/ASI Cassini raccolte durante i flyby della luna ripetuti più volte fra il 2007 e il 2015, un gruppo di ricercatori è riuscito a confermare come il Ligeia Mare, il secondo bacino per grandezza fra quelli individuati su Titano, dopo il Kraken Mare, è costituito da metano purissimo adagiato su un fondale coperto da fanghi ricchi di materiale organico.
«Credevamo di scoprire una grande distesa di etano, magari prodotta in atmosfera grazie alla pur debole radiazione solare che arriva in questo angolino del Sistema solare, invece… il Ligeia Mare è quasi interamente costituito da puro metano», spiega Alice Le Gall del Laboratoire Atmosphères, Milieux, Observations Spatiales e ricercatrice della Université Versailles Saint-Quentin, in Francia, nonché prima autrice dello studio. «Ora le spiegazioni sono due: o sul Ligeia Mare piove regolarmente metano, o c’è qualcosa che rimuove dal suo bacino la percentuale di etano che avremmo pensato di trovare. Può darsi, per esempio, che l’etano percoli nella crosta sottomarina, o che raggiunga in qualche modo il vicino Kraken Mare».
I conti non tornano, insomma. La ricerca deve continuare.
di DavideCoero Borga (INAF)

Giganti nuvole di ghiaccio sopra Titano

Non è la prima volta che la sonda Cassini studio le stagioni di Titano, la luna più grande del sistema di Saturno e in particolare del suo Polo Sud particolarmente freddo. E recentemente ha raccolto qualche nuovo dettaglio catturando una nuova gigante nuvola di ghiaccio sorvolare la superficie di Titano a centinaia di chilometri, negli strati medio bassi della stratosfera, appena sopra la troposfera. Già qualche anno fa, nel 2012, Cassini aveva immortalato una nuvola dalle dimensioni impressionanti a 300 chilometri d’altezza sul polo sud di Titano. Dopo altri studi approfonditi, si è scoperto di recente che al di sotto si nascondono altre sue “simili”, altrettanto giganti e altrettanto ghiacciate. Una nuvola molto fredda in particolare si trova a 200 chilometri d’altezza ed è stata rilevata dal Composite Infrared Spectrometer (CIRS), che mappa l’atmosfera degli oggetti celesti nell’infrarosso termico. Gli astronomi hanno visto che la nuvola ha una bassa densità, simile alla nebbia che troviamo sulla Terra. «Quando abbiamo analizzato i dati all’infrarosso, questa nuvola di ghiaccio è saltata in rilievo come mai abbiamo visto prima», ha affermato Carrie Anderson, del Goddard Space Flight Center della NASA. Le nuvole su Titano non seguono lo stesso processo di formazione delle nuvole sulla Terra, che ovviamente portano la pioggia. In questo caso il procedimento lo conosciamo tutti: l’acqua evapora dalla superficie terrestre e si scontra con le fredde temperature man mano che sale verso la troposfera. Ed è proprio qui che si formano le nuvole, essenzialmente accumuli di vapore acqueo condensato dal freddo. Su Titano, invece, le nuvole non sono fatte di acqua, bensì di metano: si formano a un’altitudine più elevata rispetto alla Terra e con un procedimento leggermente differente. La circolazione atmosferica trasporta i gas (una miscela di idrocarburi simili allo smog e prodotti chimici contenenti azoto-chiamati nitrili) dal polo nell’emisfero caldo al polo nell’emisfero freddo, dove l’aria calda scende rapidamente in un processo noto come subsidenza. Nel corso della discesa, i gas incontrano temperature sempre più fredde, così da condensarsi in maniere differenti: da qui le diverse stratificazioni delle nuvole a diverse altitudini. Cassini è arrivato nell’orbita di Saturno nel 2004, quando sul polo nord di Titano imperversava l’inverno. All’arrivo della primavera le nubi ghiacciate hanno cominciato a scomparire, ma adesso si stanno formando al polo sud, per questo Cassini riesce ad osservarle. L’accumulo di queste nubi meridionali indica che la direzione della circolazione dei gas sta cambiando. «E molto emozionante avere l’opportunità di assistere ai primi stadi dell’inverno su Titano», ha spiegato il ricercatore Robert Samuelson. «Tutto ciò che stiamo trovando al polo sud ci dice che l’inizio dell’inverno meridionale è già molto più freddo rispetto alle ultime fasi dell’inverno boreale su Titano». Dalla nuvola di ghiaccio osservata tre anni fa gli scienziati hanno determinato che le temperature al polo sud scenderanno fino ad almeno -150° C. La nuova nuvola è stata trovata nella bassa stratosfera, dove le temperature sono ancora più rigide. E’ stato anche visto che le particelle di ghiaccio sono costituite da idrogeno, carbonio e azoto. Il team di Anderson ha trovato la medesima firma – ma più debole – nei dati raccolti dal CIRS al polo nord. E’ per questo che gli astronomi credono che l’inverno al polo sud sarà più freddo: la firma chimica delle nuvole è decisamente più visibile. Scott Edgington, vice project scientist di Cassini per il JPL, ha detto: «Cassini continuerà a studiare Titano fino al 2017, quando terminerà la missione».
di Eleonora Ferroni (INAF)
Visita il sito della missione Cassini

Qui Titano: via col vento polare

La sommità dell’atmosfera di Titano rilascia circa sette tonnellate di idrocarburi e nitrili ogni giorno, ma, ad oggi, non si è stati in grado di spiegarne il motivo. Un nuovo studio dimostra il perché di questo fenomeno. La nuova ricerca, appena pubblicata su Geophysical Research Letters, spiega che questa perdita atmosferica è guidata da un vento polare, la cui energia proviene dall’interazione tra la luce solare, il campo magnetico del Sole e le molecole presenti nell’atmosfera più esterna.
Gli scienziati dell’University College London (UCL) hanno osservato, infatti, che un diffuso vento polare sta trasportando gas nell’atmosfera della luna maggiore di Saturno, Titano. Il team ha analizzato i dati raccolti durante sette anni dalla sonda internazionale Cassini e ha potuto constatare che le interazioni tra l’atmosfera di Titano da una parte, e il campo magnetico e la radiazione solare dall’altra, creano un vento di idrocarburi e nitrili che, originandosi nelle regioni polari, viene allontanato verso lo spazio. Questo fenomeno è molto simile a quello che si verifica per i venti polari terrestri.
Come la Terra e Venere, e al contrario della Luna, Titano presenta una superficie rocciosa e un’atmosfera molto spessa. E’ l’unico corpo nel sistema solare, oltre alla Terra, su cui è possibile trovare dei fiumi, delle precipitazioni e dei mari. Inoltre, è più esteso di Mercurio.
Grazie a queste caratteristiche uniche, Titano è stato studiato più approfonditamente di qualsiasi altra luna che non fosse quella della Terra, attraverso numerosi fly-by della sonda Cassini e l’atterraggio, nel 2004, del lander Huygens. A bordo di Cassini c’è uno strumento in parte progettato all’University College London, il CAPS (Cassini Plasma Spectrometer), che è stato utilizzato durante questo studio.
«L’atmosfera di Titano è costituita principalmente di azoto e metano con una pressione che equivale al 50% in più di quella della Terra», ha detto Andrew Coates del Laboratorio di scienza spaziale dell’UCL. «I dati di CAPS di qualche anno fa hanno rivelato che la sommità dell’atmosfera di Titano rilascia circa sette tonnellate di idrocarburi e nitrili ogni giorno, ma non sono stati in grado di spiegarne il motivo. Il nostro nuovo studio dimostra il perché di questo fenomeno».
Gli idrocarburi sono una categoria di molecole che include il metano e altre sostanze a noi molto comuni come il petrolio, il gas naturale e il bitume. I nitrili sono molecole costituite di azoto e carbonio saldamente legati tra loro.
«Sebbene Titano sia dieci volte più lontano dal Sole rispetto alla Terra, la sua atmosfera è comunque immersa nella luce» afferma Coates. «Quando la luce colpisce le molecole nella ionosfera di Titano, emette elettroni carichi negativamente, provenienti dalle molecole di idrocarburi e nitrili, e lascia dietro di se particelle cariche positivamente. Questi elettroni, conosciuti come fotoelettroni, hanno un’energia molto specifica di 24,1 elettronvolt, il che significa che possono essere rintracciate da CAPS, e facilmente distinti dagli altri elettroni, dato che si propagano attraverso il campo magnetico circostante».
A differenza della Terra, Titano non ha un campo magnetico proprio, ma è circondato da un campo magnetico, generato dalla rapida rotazione di Saturno, con una forma simile alla coda di una cometa. Nei 23 sorvoli compiuti sia attraverso la ionosfera di Titano che attraverso la sua coda magnetica, CAPS ha identificato quantità misurabili di questi fotoelettroni, distanti da Titano fino a 6,8 volte il suo raggio, dato che possono facilmente viaggiare lungo le linee del campo magnetico.
Il team ha scoperto che questi fotoelettroni carichi negativamente, sparpagliandosi attraverso la ionosfera e la coda di Titano, generano un campo elettrico. Questo campo è forte a sufficienza per attirare le particelle di idrocarburi e nitrili cariche positivamente nella porzione di atmosfera irraggiata dalla luce solare, dando origine a un diffuso vento polare che gli scienziati hanno potuto osservare.
Questo fenomeno è stato osservato precedentemente sulla Terra solamente nelle regioni polari, dove il campo magnetico è aperto. Siccome Titano, come si è già detto, è privo di un campo magnetico proprio, lo stesso fenomeno può verificarsi anche in regioni più ampie, non necessariamente vicino ai poli. Un simile vento polare molto diffuso si pensa possa esistere anche su Marte e Venere, i due pianeti del sistema solare che più assomigliano alla Terra. Ciò fornisce ulteriori evidenze di come Titano, nonostante la sua ubicazione in orbita attorno a un gigante gassoso nella periferia del sistema solare, possa essere considerato uno dei corpi, per certi aspetti, più simili alla Terra.
di Martina Fantini e Federico Scutti (INAF)

Titano, laboratorio per la vita

Benché l’attività più conosciuta sia quella di cercare segnali di intelligenza extraterrestre (da cui l’acronimo SETI, Search for ExtraTerrestrial Intelligence), l’istituto di ricerca statunitense SETI si occupa attivamente anche di vita extraterrestre non necessariamente intelligente. In particolare, al Carl Sagan Center del SETI Institute vengono condotte ricerche nel campo dell’astrobiologia, ovvero lo studio della vita nell’universo.
Un gruppo di ricerca del SETI Institute guidato da Hiroshi Imanaka, specialista nella chimica delle atmosfere planetarie, è stato di recente selezionato per entrare nella squadra di NExSS (Nexus for Exoplanet System Science), una nuova iniziativa della NASA per affrontare in maniera collaborativa il problema di trovare vita su pianeti attorno ad altre stelle.
«Uno dei traguardi più rilevanti conseguiti dalla comunità scientifica che si occupa di esopianeti è stato quello di trovare mondi orbitanti nella cosiddetta zona abitabile», osserva Imanaka, «ovvero in quell’intervallo di distanze da una stella in cui un pianeta potrebbe avere temperature tali da permettere l’esistenza di oceani liquidi. Tuttavia, la presenza di abbondante acqua allo stato liquido non è l’unica condizione necessaria allo sviluppo e all’esistenza della vita. Alcune delle lune di Giove e Saturno sono esempi di luoghi che non risiedono nella zona abitabile convenzionale, ma che potrebbero comunque essere abitabili. Ora, il nostro obbiettivo è di prendere ulteriori misure per caratterizzare gli ambienti abitabili che si trovano al di là del sistema solare».
Lo studio dei pianeti intorno ad altre stelle – i cosiddetti esopianeti – è un campo relativamente nuovo. La scoperta del primo esopianeta attorno a una stella simile al Sole risale solo a vent’anni fa. Da allora, grazie soprattutto ad alcuni strumenti dedicati come il satellite Kepler della NASA, ne sono stati scoperti più di mille, con altre svariate migliaia di candidati in attesa d’essere confermati. E’ stata proprio questa repentina e affollata irruzione sul palcoscenico scientifico che ha spronato gli sforzi per stabilire se qualcuno di questi esopianeti presenti indizi d’attività biologica, come la presenza d’ossigeno o di metano nelle loro atmosfere. La scoperta di pianeti extrasolari è stato un lavoro fatto in gran parte dagli astronomi, ma sono gli scienziati planetari e gli astrobiologi che hanno l’esperienza necessaria per caratterizzare ambienti planetari ed esaminarli per la biologia.
In questo contesto, l’intento della collaborazione NExSS è quello di mettere assieme le competenze degli astronomi, che scoprono gli esopianeti, con quelle di planetologi ed esobiologi, che descrivono le loro caratteristiche. Quindi unire questi due approcci scientifici non semplicemente per trovare pianeti extrasolari, ma per determinare se ospitano la vita. Ma qual è il ruolo degli astrobiologi SETI in questo sforzo?
Imanaka e i suoi colleghi hanno studiato approfonditamente un mondo del sistema solare che potrebbe fornire utili indizi per esopianeti similari: Titano, la più grande luna di Saturno. «Abbiamo studiato a lungo la chimica organica di questa luna intrigante, avvolta in una spessa atmosfera nebbiosa sotto cui sappiamo esserci laghi di metano liquido ed etano», conferma Imanaka.
Naturalmente è alquanto improbabile che nei laghi di Titano sguazzino delle forme di vita, pur microbiche, benché recentemente sia stato messo a punto un modello biologico, differente da quello terrestre, perfetto per quei gelidi idrocarburi (vedi Media INAF). E allora in che senso si può considerare questo mondo un buon analogo per un esopianeta che possa invece ospitare la vita?
«E’ anche possibile che Titano ospiti forme di vita, o comunque non posso negarlo con certezza», dice Imanaka. «Ma quello che è certo e interessante per noi è che Titano può insegnarci molto su un mondo pre-biotico, poiché lì vengono prodotti i composti organici più complessi noti al di fuori della Terra. E grazie alle sue temperature estremamente basse temperature, tutte le reazioni chimiche su Titano sono lente. E’ un mondo al rallentatore, e proprio per questo motivo ci può dire qualcosa sulle condizioni della Terra primordiale e forse anche su alcuni pianeti extrasolari. Far parte della rete NExSS ci permetterà di applicare la nostra profonda conoscenza di Titano all’esame delle atmosfere di pianeti extrasolari nebbiosi, che potrebbero risultare simili».
di Stefano Parisini (INAF)

Tempesta all’equinozio, infuria ogni 15 anni

Titano non smette di stupire. La grande luna di Saturno sarà anche il miglior candidato – dopo la Terra, ça va sans dire – a ospitare la vita nel Sistema solare, ma certo di normale ha ben poco: anche le cose in apparenza più familiari assumono lassù contorni da fantascienza. Prendiamo le colossali dune che ne solcano la superficie correndo parallele all’equatore. Alte fino a cento metri e lunghe decine di chilometri, a differenza di quelle sabbiose dei nostri deserti sono fatte, probabilmente, di polimeri idrocarburici: una sorta di fuliggine originata dalla decompressione del metano in atmosfera. Certo, sono anch’esse spazzate da venti di superficie, proprio come quelle della Terra. C’è però un problema, già sottolineato qualche mese fa da un altro articolo pubblicato su Nature: mentre questi venti – così dicono i modelli – soffiano verso ovest, stando alle osservazioni dell’orbiter Cassini le dune corrono nel verso opposto, puntando inequivocabilmente verso est.
Com’è possibile? Quale altra forza può aver loro impresso una così sorprendente contropiega? Le ipotesi non mancano, arrivando persino a evocare l’attrazione gravitazionale di Saturno. Finora, però, nessuna è risultata abbastanza convincente. Almeno non agli occhi del team guidato da Benjamin Charnay, della University of Washington (Seattle, USA), che ha appena pubblicato su Nature Geoscience i risultati di un nuovo modello stando al quale la risposta andrebbe, piuttosto, cercata in violente quanto rarissime tempeste di metano che si scatenano occasionalmente nell’alta atmosfera della luna, dunque a quota più elevata rispetto ai venti di superficie.
Violente, qui, va inteso in senso relativo: si tratterebbe infatti di “raffiche” di metano che sfiorano, quando va bene, i 10 metri al secondo. A malapena un innocuo refolo per chi è abituato alla bora triestina, con i loro 36 km/h queste correnti “titaniche” risultano comunque dieci volte più impetuose della dolce brezza che è solita accarezzare la superficie della luna.
Rare, invece, lo sono sul serio. Le tempeste d’alta quota si scatenano soltanto in occasione dell’equinozio, quando la notte e il dì hanno identica durata. Concomitanza che su Titano è una trentina di volte meno frequente di quanto non lo sia sul nostro pianeta: se sulla Terra avviene ad ogni inizio di primavera e d’autunno, là sulla luna di Saturno occorre attendere quasi 15 anni – 14.75, per l’esattezza – prima che si ripresenti.
Eppure, nonostante siano così sporadiche, la loro intensità è tale da innescare, stando al modello di Charnay, forti correnti discendenti che, giunte in superficie, spirano verso est. Le correnti sarebbero aiutate, in questo, da un altro curioso tratto di Titano: l’atmosfera super-rotante – ovvero, che ruota più veloce della superficie solida sottostante, caratteristica che la luna condivide con Venere. Riuscendo così a raggiungere una forza sufficiente a imprimere alle dune una piega in grado di resistere anche a distanza di anni, visto che l’ultimo equinozio si è verificato nel 2009 e loro sono ancora lì.
Arrivare a ricostruire questo complesso scenario, mettendo insieme indizio su indizio, è stato un lavoro da detective. Ora si tratta di metterlo alla prova. Ma come? L’ideale sarebbe sfruttare nuovamente Cassini per una campagna osservativa da condurre durante il prossimo equinozio, in programma per il 2023. Ma sarà già troppo tardi: la missione della sonda NASA/ESA/ASI giungerà infatti al capolinea nel 2017.
«Ma ci saranno altre missioni», promette Charnay, «perché ancora rimangono molti misteri da chiarire su Titano. Ancora non sappiamo come si sia formata la sua densa atmosfera d’azoto, da dove arrivi il metano o come si formi la sabbia della luna. E non è del tutto escluso», conclude ottimista, «che là possa esserci la vita, magari nel fondo dei suoi mari di metano».
di Marco Malaspina (INAF)

Titano: la vita che non ti aspetti

Una nuova forma di vita basata sul metano che fa tranquillamente a meno dell’ossigeno, ma ha metabolismo e meccanismi di riproduzione simili a quelli dei viventi che possiamo trovare qui sulla Terra. Perfetta per Titano!
Un team di ricercatori della Cornell University è riuscito a immaginare una forma di vita completamente diversa da quelle cui siamo abituati. In una prospettiva strettamente scientifica e allo stesso tempo incredibilmente fantasiosa, ingegneria chimica e astronomia ci offrono così un modello realistico di quella che potrebbe essere la vita aliena su un lontano pianeta di ghiaccio e privo di ossigeno come la luna gigante di Saturno, Titano (di cui spesso abbiamo scritto su MediaINAF).
Lo studio, pubblicato su Science Advances, spiega come gli scienziati abbiano modellizzato in laboratorio un tipo di membrana cellulare di composizione organica (a base di azoto) in grado di resistere a temperature proibitive come quelle del metano liquido, a 292 gradi sotto zero. Fra i firmatari dell’articolo: una chimica esperta di dinamica molecolare come Paulette Clancy, l’ingegnere chimico James Stevenson e il direttore del Cornell’s Center for Radiophysics and Space Research, Jonathan Lumine.
Esperto in tema di lune di Saturno e mari di metano, come quelli avvistati dalla missione Cassini-Huygens, Lumine è stato il primo a intuire che per riconoscere forme di vita non basate sull’ossigeno fosse necessario fare ricerca con chimici di livello internazionale. Solo immaginando nuove forme di vita possiamo riconoscere un alieno quando lo incontriamo.
«Non siamo biologi, non siamo astronomi», ammette Paulette Clancy. «Ma forse è stata propria questa nostra ambiguità a permetterci di immaginare quali fossero gli ingredienti giusti per fabbricare una membrana cellulare aliena. Abbiamo lavorato con quanto c’è a disposizione su un mondo apparentemente inospitale come Titano e questo è il risultato».
Sulla Terra la vita si basa su membrane a doppio strato fosfolipidico, permeabili, acquose, che ospitano la materia organica di ogni cellula – la definizione di fascia di abitabilità su cui lavorano gli astrofisici risente in gran parte di questa concezione di essere vivente. Ma cosa succederebbe su un pianeta blu non di acqua, bensì di metano? Addio liposomi. Benvenuti “azotosomi”. È così che gli ingegneri chimici hanno battezzato la loro forma di vita a base azotata: molecole di azoto, carbonio, idrogeno, presenti in abbondanza negli oceani criogenici di Titano, e tanto stabili e flessibili quanto i liposomi terrestri. Una bella sorpresa per i chimici che non avrebbero mai immaginato meccanismi di stabilità cellulare analoghi. Certo l’ET di Spielberg aveva una faccia più simpatica.
di Davide Coero Borga (INAF)

Nuovo look per Titano

Quando una sonda viene lanciata in orbita le incognite sono molte: arriverà mai a destinazione? E se arriva all’obiettivo, riuscirà a rimanere in orbita abbastanza a lungo per catturare e analizzare dati? Come arriveranno questi dati sulla Terra è un’altra incognita, perché spesso sono inutilizzabili o altre volte non arrivano affatto. Poi ci sono missioni che durano più del previsto o che riescono ottenere immagini e analizzare dati che inizialmente sembravano impossibili. Questo perché molto spesso le missioni vengono ideate, progettate e realizzate nel corso di dieci o venti anni.
Come è accaduto nel caso della sonda Cassini, che è in orbita attorno a Saturno da 10 anni, dopo che la missione è stata estesa per ben due volte (nel 2008 e nel 2010) e si pensa di portarla avanti almeno fino al 2017. Di Cassini si è cominciato a parlar già nel 1982, anche se la progettazione vera e propria è iniziata solo negli anni ’90. In ben 10 anni di scoperte la sonda, nata dal lavoro congiunto di NASA/ESA/ASI, ha osservato e scrutato in ogni dettaglio anche una delle lune più famose del sesto pianeta del Sistema solare, Titano. In tutti questi anni, però, il modo di guardare a Titano è cambiato, o almeno sono cambiate le tecniche per analizzare i dati e le immagini che di volta in volta sono state inviate a Terra. L’italiano Synthetic Aperture Radar (SAR) montato a bordo di Cassini ha mappato nel corso del tempo la superficie del satellite naturale più grande del sistema di lune di Satruno, tracciato e rivelato vaste distese di dune di sabbia e “tuffato” nei mari di idrocarburi. Ma a volte le immagini che ci sono arrivate non erano molto nitide, nonostante la loro bellezza.
Grazie a una tecnica recentemente sviluppata per la gestione del rumore di fondo e delle interferenze elettroniche nelle immagini radar di Cassini, Titano ha assunto un look nuovo di zecca. La tecnica, che i suoi sviluppatori chiamano “despeckling” (cioè smacchiatura) produce delle immagini della superficie di Titano che sono molto più chiare, nitide e facili da guardare rispetto a ciò che in questi anni gli scienziati e il pubblico hanno guardato. Di certo 10 o 20 anni fa, i ricercatori non avrebbero mai immaginato che un giorno le immagini di Titano sarebbero mai state così nitide.
Di solito, le immagini radar di Cassini hanno un aspetto granuloso (per non dire fastidioso), che crea quello che in gergo viene chiamato “rumore”, un’interferenza che rende difficile l’interpretazione delle caratteristiche più piccole o l’identificazione dei particolari cambiamenti in foto scattate nel corso del tempo. La nuova tecnica sviluppata da Antoine Lucas (che lavora alla divisione astrofisica del Commissariato per l’energia atomica in Francia) si basa essenzialmente su un algoritmo per modificare questo rumore e rendere le immagini più fruibili. In pratica un modello matematico di “de-noising” o di soppressione del rumore.
“Ripulire” le immagini radar di Cassini ha una varietà di benefici scientifici, perché si potranno produrre mappe 3D (Digital Elevation Model, DEM) della superficie di Titano con un notevole miglioramento nella qualità. Con una visione più chiara di canali fluviali, delle coste lacustri e delle dune, i ricercatori saranno in grado di eseguire analisi più precise dei processi che modellano la luna di Saturno. Per non parlare poi del fatto che lo stesso rumore, la stessa interferenza, se analizzata separatamente, può contenere informazioni sulle proprietà della superficie e di sottosuolo.
In questo montaggio si può vedere come le immagini siano cambiate con la nuova tecnica di Lucas. Nella fila in alto sono state inserite le foto scattate dal SAR; nella fila in basso, invece, ci sono le immagini processate con la nuova tecnica di de-noising. Le tre coppie a sinistra ritraggono il Ligeia Mare, mentre nella coppia di foto a destra si vedono una serie di vallate e Jingpo Lacus. Ogni immagine rappresenta un’area larga nella realtà 112 chilometri.
«E’ una tecnica incredibile e Antoine ha fatto un gran lavoro nel dimostrare che è affidabile», ha detto Randy Kirk, membro del team che si occupa del radar di Cassini presso il Geologic Survey a Flagstaff (Stati Uniti). Kirk ha anche spiegato che i ricercatori stanno selezionando le immagini più importanti e con una più alta priorità su cui applicare la nuova tecnica e chissà se in futuro questo algoritmo non possa essere utilizzato anche per altre missioni. Magari fra qualche anno ne verrà sviluppato uno più avanzato e preciso. Questo è il bello della scienza e della tecnologia.
di Eleonora Ferroni (INAF)

Voci precedenti più vecchie