Signori si cambia: “Hubble-Lemaître law”

L’equazione è di quelle brevissime, appena tre termini, come si addice alle più eleganti tra le rappresentazioni matematiche della Natura: v = HD. Ciò che descrive è uno fra i tratti caratteristici del nostro universo: la velocità della sua espansione. E ciò che implica – descrivendo, appunto, un universo in espansione – è nientemeno che il big bang. Un’equazione fondamentale, dunque, conosciuta fino a oggi come Legge di Hubble. Ma presto potrebbe cambiare nome. E diventare “Legge di Hubble-Lemaître”, in onore del fisico e astronomo belga che per primo la formulò: Georges Lemaître, prete diocesano.La proposta, da tempo nell’aria, è del comitato esecutivo della Iau, l’Unione astronomica internazionale. Gli stessi che hanno il potere di dare i nomi alle stelle, per dire. Gli stessi che, nel 2006, sancirono che Plutone non è più un pianeta. E proprio i malumori che fecero seguito a quella storica risoluzione li hanno ora indotti a procedere con cautela: la risoluzione sulla Legge di Hubble-Lemaître, pur approvata dai circa 3000 iscritti all’Iau presenti a Vienna la settimana scorsa in chiusura dell’Assemblea generale, per diventare effettiva dovrà superare il voto – questa volta elettronico – di tutti i circa diecimila membri dell’Unione. Insomma, per la decisione definitiva occorre aspettare ancora tre mesi. Nell’attesa, per comprendere le ragioni storiche e scientifiche di questa risoluzione, abbiamo chiesto aiuto – e un parere – all’astrofisico Massimo Della Valle, dirigente di ricerca all’Inaf di Napoli. «Nel 1927 Lemaître pubblica – in francese e su un giornale poco diffuso, gli Annales de la Société Scientifique de Bruxelles, l’articolo “Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extragalactiques” (“Un Universo omogeneo  con massa costante e raggio crescente che spiega le velocità radiali delle nebulose extragalattiche”, come venivano chiamate allora le galassie esterne alla nostra). In quest’articolo Lemaître non si limita a scoprire le soluzioni dinamiche alle equazioni della relatività generale di Einstein (peraltro già trovate da Friedmann nel 1922), dalle quali deriva quella che oggi è conosciuta, appunto, come “legge di Hubble” – cioè che la velocità di recessione delle galassie è linearmente proporzionale alla distanza: Lemaître va oltre. Utilizzando le velocità di 42 galassie, misurate qualche anno prima da Vesto Slipher, e le loro luminosità, derivate nel 1926 da Hubble, determina il tasso di espansione dell’universo. Quindi è Lemaître a misurare, prima di Edwin Hubble, la costante H0 , successivamente chiamata costante di Hubble. Lemaître trova due valori», ricorda Della Valle, «575 km/s e 670 km/s per megaparsec, e assume un valore medio di 625 km/s per megaparsec. Due anni dopo, nel 1929 e poi nel 1931 con Humason, Edwin Hubble raffina la misura trovando Hpari a circa 500 km/s per megaparsec [ndr: oggi è stimata fra i 66 e i 75 km/s/megaparsec]». Come mai, allora, la relazione è stata invece attribuita all’astrofisico statunitense? «In molte storie importanti non mancano i colpi di scena. Questa non fa eccezione. Nel 1931», continua Della Valle, «l’editore di Monthly Notices of the Royal Astronomical Society suggerì a Lemaître di fornire una versione in inglese del suo lavoro del 1927, per poterla pubblicare sul suo giornale. Il lavoro viene pubblicato, ma ne manca un pezzo, come appurato successivamente da vari autori, fra i quali l’astrofisico Sidney van den Bergh, che nel 2011 scriveva: “sembra che il traduttore dell’articolo di Lemaître del 1927 abbia deliberatamente cancellato quelle parti del documento che si occupavano della determinazione di ciò che viene attualmente chiamato parametro di Hubble. La ragione di ciò rimane un mistero”».

Lost in translation

Insomma, è come se il contributo di Lemaître fosse andato “perduto” nel corso della traduzione. Chi ha “censurato” Lemaître quando ha tradotto l’articolo? «Il mistero è stato recentemente svelato da Mario Livio», spiega a Media Inaf Della Valle, «mentre era astronomo allo Space Telescope Institute di Baltimora. Rovistando tra la corrispondenza della Royal Astronomical Society e nell’archivio di Lemaître, Livio ha trovato una lettera autografa di Lemaître nella quale l’astrofisico belga chiarisce di essere stato lui stesso a tradurre il lavoro del 1927, e a censurarlo in alcuni suoi paragrafi che considerava importanti nel 1927 ma irrilevanti nel 1931, perché oramai superati dopo la pubblicazione nel 1929 dell’articolo di Hubble». La “colpa”, dunque, di altri non è se non dell’incredibile modestia di Lemaître stesso. Come del resto sottolinea la risoluzione della Iau, laddove nelle motivazioni, accanto al voler dare il giusto riconoscimento a entrambi gli scienziati, sottolinea la volontà di onorare l’integrità intellettuale di Georges Lemaître, che gli ha fatto anteporre il progresso della scienza alla visibilità personale. «Chiamare la legge di Hubble “legge di Hubble-Lemaître” mi pare doveroso», conclude Della Valle.
di Marco Malaspina (INAF)

Annunci

Vulcani di ghiaccio su Cerere

Parlando di eruzioni vulcaniche, immaginiamo sempre pericolose colate di lava. Ma se a colare fosse acqua salata? È quanto potremmo aspettarci se sulla Terra fossero presenti criovulcani, cioè letteralmente vulcani di ghiaccio, che eruttano liquidi o gas volatili come acqua, ammoniaca o metano invece di spargere roccia fusa. Un fenomeno ancora poco compreso, ma che presenta già i suoi primi esempi nel nostro Sistema solare. In particolare, l’acqua salata è probabilmente il componente principale delle criolave su Cerere, il solo pianeta nano presente nella fascia principale degli asteroidi. Un nuovo studio, apparso su Nature Astronomye diretto da Michael Sori del Lunar and Planetary Laboratory dell’Università dell’Arizona, ha analizzato le immagini inviate dalla sonda spaziale Dawn della Nasa, in orbita intorno a Cerere dal 2015, per valutare l’impatto del criovulcanesimo su un corpo celeste rispetto al classico vulcanismo basaltico tipico dei pianeti terrestri. «C’è stato un grande interesse nella ricerca dei criovulcani su Cerere non appena Dawn è arrivata lì, perché i modelli termici avevano predetto che potevano esistere. Ahuna Mons è stato subito un gran candidato. Ho effettuato una ricerca globale che ha identificato trentuno altre grandi cupole, basata sull’analisi delle immagini della Framing Camera di Dawn e dei dati topografici», racconta Hanna Sizemoresenior scientist del Planetary Science Institute e coautrice dello studio. «Affermare che erano vulcaniche era difficile perché erano più antiche di Ahuna e le superfici erano fortemente craterizzate». Misurando altezza e diametro di ventidue di queste cupole, per poi calcolarne proporzioni e volumi, i ricercatori hanno confrontato le forme delle montagne con modelli numerici i quali, partendo da picchi acuti come Ahuna Mons, hanno consentito il calcolo del tempo necessario al rilassamento utile alla lava ghiacciata per appiattirsi fino a che le cupole raggiungessero la loro forma attuale. I risultati hanno rafforzato l’idea che queste cupole siano caratteristiche vulcaniche, permettendo paragoni con il vulcanismo su altri pianeti. Inoltre, le analisi hanno permesso di assegnare età approssimative alla maggior parte delle cupole, fare un controllo incrociato del modello di età con altri vincoli e approssimare la velocità con la quale esse si sono formate nell’ultimo miliardo di anni, contribuendo a mostrare che Cerere ha sperimentato il criovulcanismo durante tutta la sua storia geologica, con una velocità di espulsione superficiale media di circa 10mila metri cubi all’anno, diversi ordini di grandezza inferiori a quelli del vulcanismo basaltico sui pianeti terrestri. Infatti, aggiunge Sizemore: «Dato quanto è piccolo Cerere e quanto velocemente si è raffreddato dopo la sua formazione, sarebbe stato interessante identificare solo uno o due possibili criovulcani sulla superficie. Identificare una vasta popolazione di caratteristiche che potrebbero essere criovulcani suggerirebbe una lunga storia di vulcanismo che si estende fino ai giorni nostri, il che è tremendamente eccitante». «Cerere è un piccolo mondo che dovrebbe essere morto, ma questi nuovi risultati suggeriscono che potrebbe non esserlo. Vedere così tante potenziali prove di criovulcanesimo su Cerere presta anche maggior peso alle discussioni sui processi criovulcanici su grandi lune ghiacciate nel Sistema solare esterno, dove è probabilmente più vigoroso», conclude Sizemore.
di Matteo Boni (INAF)

Mai vista una stella di neutroni così

Il telescopio spaziale Hubble ha rilevato un’insolita emissione infrarossa, proveniente da una stella di neutroni, che potrebbe aprire una nuova finestra verso la comprensione di queste macchine infernali che si trovano nell’universo. I ricercatori hanno individuato due scenari possibili per spiegare questo segnale fuori dal comune: un disco di polvere che circonda la stella di neutroni, con un diametro di circa 30 miliardi di chilometri; oppure un vento energetico proveniente dalla stella di neutroni, che urta il gas presente nello spazio interstellare che la stella di neutroni sta attraversando. Sebbene le stelle di neutroni siano generalmente studiate nel radio e nelle alte energie, tipicamente nei raggi X, i ricercatori sono convinti che questo studio dimostri come nuove e interessanti informazioni su questi oggetti compatti possano essere acquisite studiandole anche nell’infrarosso. L’osservazione – effettuata da un team di ricercatori della Pennsylvania State University (in Pennsylvania), dell’Università Sabanci (a Istanbul, in Turchia) e dell’Università dell’Arizona (a Tucson, in Arizona) – potrebbe aiutare gli astronomi a capire meglio l’evoluzione delle stelle di neutroni, i resti incredibilmente densi dell’esplosione di una stella massiccia in quella che viene chiamata supernova. Le stelle di neutroni sono chiamate anche pulsar, perché la loro rotazione molto veloce (in genere frazioni di secondo, in questo caso 11 secondi) causa emissioni variabili nel tempo, come quelle dei fari nella notte. Oggetto di questa particolare osservazione è la stella di neutroni catalogata come Rx J0806.4-4123. «Questa particolare stella di neutroni appartiene a un gruppo di sette pulsar a raggi X vicine, soprannominate le magnifiche sette che, considerata la loro età e il serbatoio di energia disponibile fornito dalla perdita di energia di rotazione, sono più calde di quanto dovrebbero essere», spiega Bettina Posselt, astrofisica presso la Pennsylvania State e prima autrice dell’articolo. «Abbiamo osservato un’area estesa di emissione infrarossa attorno a questa stella di neutroni, la cui dimensione totale si traduce in circa 200 unità astronomiche (circa 30 miliardi di km) alla presunta distanza della pulsar».Questa è la prima stella di neutroni nella quale è stato visto un segnale infrarosso provenire da una regione estesa. I ricercatori suggeriscono due possibilità che potrebbero spiegare tale segnale. La prima suppone che ci sia un disco di materiale – forse per lo più polvere – che circonda la pulsar. «Una teoria è che potrebbe esserci quello che è noto come fallback disk di materiale che si è agglomerato attorno alla stella di neutroni dopo la supernova», dice Posselt. «Un tale disco sarebbe composto di materia proveniente dalla stella progenitrice. La sua successiva interazione con la stella di neutroni potrebbe avere riscaldato la pulsar fino a rallentarne la rotazione. Se confermato come disco derivato dalla supernova, questo risultato potrebbe cambiare la nostra comprensione generale dell’evoluzione delle stelle di neutroni». La seconda possibile spiegazione dell’emissione infrarossa di questa stella di neutroni è che ci sia una Pulsar Wind Nebula, nota anche come plerione, che sarebbe un particolare tipo di nebulosa trovata all’interno dei gusci dei resti di supernove, alimentata da venti che soffiano dalla pulsar centrale. «Una Pulsar Wind Nebula richiederebbe che la stella di neutroni mostrasse il vento della pulsar», osserva Posselt. «Un vento della pulsar si genera quando le particelle vengono accelerate nel campo elettrico prodotto dalla veloce rotazione di una stella di neutroni con un forte campo magnetico. Quando la stella di neutroni viaggia attraverso il mezzo interstellare a una velocità superiore a quella del suono, si può formare uno shock in cui interagiscono il mezzo interstellare e il vento della pulsar. Le particelle nello shock emettono radiazione di sincrotrone, causando il segnale infrarosso esteso che vediamo. Tipicamente, le Pulsar Wind Nebula sono viste nei raggi X e una Pulsar Wind Nebula infrarossa sarebbe molto insolita ed eccitante». Utilizzando il telescopio spaziale James Webb della Nasa, gli astronomi saranno in grado di esplorare ulteriormente questa scoperta nell’infrarosso per comprendere meglio l’evoluzione delle stelle di neutroni.
di Maura Sandri (INAF)

100 anni di Lambda

Celebrità il mondo anniversario della costante cosmologica, introdotta nel 1917 da Albert Einstein che la identificò con la lettera greca Lambda (Λ). Per l’occasione, due articoli pubblicati su  The European Physical Journal H, evidenziano il suo ruolo nella fisica e nella cosmologia negli ultimi 100 anni. È stato detto che per la prima volta quando è stato pensato che l’universo è statico, oggi la costante è considerata la principale considerazione per l’essenza fisica ritenuta responsabile dell’espansione accelerata del nostro universo. La verità è stata accettata, la costante cosmologica è stata per ogni argomento sulla sua vera necessità, sul suo valore e sulla sua natura. Nonostante il lungo dibattito e le ricerche teoriche e sperimentali, ancora oggi sono problemi irrisolti nella comprensione della natura Nel suo articolo,  Bohdan Novosyadlyj , associato alla Università Nazionale di Lviv , in Ucraina, spiega Albert Einstein nel 1917, elaborando il primo modello cosmologico moderno, introducendo la costante cosmologica: allora è necessaria una soluzione statica delle equazioni Einstein, allora ritenuta come la più ragionevole dalla maggior parte degli esperti. Il suo profondo significato fisico, tuttavia, sfuggì ad Einstein. Dopo la scoperta delle prove che hanno avvalorato un universo non statico nel 1929, Einstein si pentì di aver adottato questa considerazione nelle equazioni della Relatività generale. Nel frattempo, altri studi hanno cercato per comprendere il suo pensiero fisico e rendono la sua grandezza. Furono infine modelli alternativi a Lambda che  Michael Turner nel 1998, chiamò genericamente energia oscura  (energia oscura). In un altro articolo,  Cormac O’Raifeartaigh  del  Waterford Institute of Technology, in Irlanda, insieme ai suoi colleghi, ha presentato un’analisi dettagliata della storia dei 100 anni della costante cosmologica. A partire da un’idea statica universale, l’articolo spiega l’idea della costante cosmologica sia stata accantonata in seguito alle osservazioni di Hubble che implicano un’espansione dell’universo. È stato riconsiderato per efficacia l’attuale accelerata dell’universo, misurata per la prima volta con le osservazioni delle Supernove di tipo Ia, nel 1998. Recentemente, la costante ha acquisito un grande significato fisico, poiché ha contribuito a combinare recenti osservazione con la teoria. Nello specifico, è stato d’aiuto per riconciliare la teoria con il fenomeno osservato di recente energia oscura, Media Inaf  ha  conseguito Alessandro Gruppuso , ricercatore dell’Inaf di Bologna, che si occupa da tanti anni di cosmologia teorica ed osservativa, sulla costante cosmologica e sulla sempre affascinante energia oscura.

Perché Albert Einstein ad un certo punto definì l’introduzione della costante cosmologica il suo più grande errore?

Ci sono due motivazioni, una teoria ed una osservativa. Quella teoria è l’insieme della soluzione statica, in cui la teoria di Fisicamente non è accettabile, poiché è la norma di stabilità. Quella osservativa riguarda la scoperta da parte di Hubble dell’espansione dell’universo.

Perché la costante cosmologica rappresenta un problema teorico?

Il termine di costante cosmologica è matematicamente uguale ad un termine di energia di vuoto. Come riportato in uno di questi articoli, è  Lemaitre  ad accorgersi di questa equivalenza. Successivamente  Zel’dovic  mise in Relazione racconto Termine con il vuoto quantistico. Questo è un modo elegante di mantenere la cosmologia in termini di effetti quantistici di vuoto. Purtroppo, calcolando da principi il valore numerico di cui si parla di energia di vuoto, si scopre, con grande imbarazzo, che differisce anche di 120 ordini di grandezza rispetto a quanto ottenuto dalle osservazioni. Si tratta, come diceva  Hawking , del più grosso fallimento di una teoria fisica.

A che punto siamo con la determinazione di questo numero?

Dal punto di vista osservativo, Lambda ha un valore ben misurato e concorde tra vari esperimenti. Essa rappresenta, nel modello cosmologico standard, circa il 70% del budget di energia-materia contenuto nell’universo, come ad esempio misurato dal satellite Planck dell’Esa, per cui lavoro dal 2005. I problemi concettuali associati a una storia costante hanno portato diversi teorici a temi modelli a Lambda, noti come modelli di  energia oscura . Questi modelli, che riproducono alla nostra epoca cosmologica in modo dinamico, sono simili a un Lambda, si differenziano da essa tramite la loro evoluzione temporale. Uno degli obiettivi fondamentali della cosmologia osservativa moderna è proprio quello di testare l’eventuale sviluppo temporale della componente di  energia oscura .

Scoperte dodici nuove lune di Giove

Sono dodici le nuove lune di Giove appena scoperte: undici sono “normali” lune esterne e una è invece parecchio “stravagante”. La scoperta porta il numero totale delle lune di Giove a oggi conosciute a settantanove, un numero enorme, più di qualsiasi altro pianeta del nostro Sistema solare. Un gruppo di ricerca guidato da Scott Sheppard di Carnegie ha individuato queste lune nella primavera del 2017, mentre stava dando la caccia a oggetti molto distanti nel Sistema solare, identificabili come possibili pianeti oltre l’orbita di Plutone. Nel 2014, lo stesso gruppo aveva trovato l’oggetto con l’orbita più distante nel nostro Sistema solare ed è stato il primo gruppo a intuire la possibile esistenza di Planet Nine (o Pianeta X): un pianeta massiccio, di fatto ancora sconosciuto, ai margini del nostro Sistema solare, ben oltre Plutone, che potrebbe spiegare la somiglianza delle orbite di diversi piccoli oggetti estremamente distanti. Anche Dave Tholendell’Università delle Hawaii e Chad Trujillo della Northern Arizona University fanno parte del gruppo di ricerca di Planet Nine. «Giove si è trovato vicino al nostro campo di vista, nel quale stavamo effettuando la ricerca di oggetti molto distanti, appartenenti al nostro Sistema solare. La scoperta», spiega Sheppard, «è stata un esempio di serendipità: abbiamo trovato le nuove lune attorno a Giove mentre cercavamo pianeti ai margini del Sistema solare». Gareth Williams dell’International Astronomical Union’s Minor Planet Center ha utilizzato le osservazioni del team per calcolare l’orbita delle lune appena scoperte. «Sono necessarie diverse osservazioni per confermare che un oggetto sta effettivamente orbitando attorno a Giove», ricorda Williams. «Quindi, l’intero processo è durato un anno». Nove delle nuove lune fanno parte di uno gruppo di lune esterne che orbitano in direzione retrograda, ossia  opposta alla direzione di rotazione di Giove. Queste lune retrograde, più distanti, sono raggruppate in almeno tre distinti gruppi orbitali e si pensa siano i resti di tre corpi più grandi che si sono separati durante le collisioni con asteroidi, comete o con altre lune. Le lune retrograde scoperte di recente impiegano circa due anni per orbitare attorno a Giove. Due delle lune scoperte fanno parte di un gruppo di lune più interno che orbitano nella stessa direzione di rotazione del pianeta. Queste lune più interne prograde hanno simili distanze orbitali e angoli di inclinazione, e si pensa che siano frammenti di una luna più grande che si è frantumata. Queste due lune appena scoperte impiegano poco meno di un anno per girare attorno a Giove. «L’altra nostra scoperta è un oggetto veramente bizzarro, con un’orbita come nessun’altra luna gioviana nota» racconta Sheppard. «Probabilmente è anche la luna più piccola di Giove, con meno di un chilometro di diametro». Questa nuova luna “strana” è la più distante e più inclinata del gruppo di lune prograde e impiega circa un anno e mezzo per orbitare attorno a Giove. Quindi, a differenza del più vicino gruppo di lune prograde, questa strana luna prograda ha un’orbita che attraversa le lune retrograde esterne. Di conseguenza, è molto più probabile che avvengano scontri frontali tra la “strana” luna prograda e le lune retrograde, che si muovono in direzioni opposte. «È una situazione instabile», sottolinea Sheppard. «Le collisioni frontali distruggono rapidamente le lune, riducendole in polvere». È possibile che i vari raggruppamenti orbitali di lune che oggi vediamo si siano formati nel lontano passato attraverso questo meccanismo. Il gruppo di ricerca pensa che questa piccola luna prograda possa essere il residuo di una luna prograda più grande, che una volta orbitava attorno a Giove e che si è distrutta in seguito a collisioni frontali, dando origine a lune più piccole, tra cui quella che è stata trovata. Il nome della piccola luna scoperta è Valetudo che, richiamando la mitologia romana, è la pronipote di Giove, dea della salute e dell’igiene. Chiarire le complesse influenze che hanno modellato la storia orbitale della luna può far comprendere agli scienziati come si è evoluto il ​​nostro Sistema solare nei primi anni. Ad esempio, la scoperta che le lune più piccole nei vari gruppi orbitali di Giove sono abbondanti suggerisce che le collisioni che le hanno create si sono verificate dopo l’era della formazione dei pianeti, quando il Sole era ancora circondato da un disco rotante di gas e polvere dal quale i pianeti si sono formati. A causa delle loro dimensioni, da uno a tre chilometri, queste lune sono più influenzate dal gas e dalla polvere circostanti. Se questi materiali fossero stati ancora presenti quando la prima generazione di lune di Giove si scontrò per formare gli attuali raggruppamenti di lune, l’attrazione esercitata da gas e polveri sulle lune più piccole sarebbe stata sufficiente a trascinarle, facendole spiraleggiare verso Giove.
di Maura Sandri (INAF)

Tutte le stelle dell’Aquila

La Nebulosa dell’Aquila, con il suo ammasso Ngc 6611, è certamente una delle nebulose più note e osservate, soprattutto grazie alle meravigliose immagini dei Pilastri della Creazione realizzate con il satellite Hubble: pilastri di polveri e gas lunghi alcuni anni luce, modellati dalla radiazione ultravioletta emessa dalle stelle massive di Ngc 6611, e sede di formazione stellare recente. L’ammasso stellare ospita alcune migliaia di stelle mediamente con un milione di anni di età, tra le quali una cinquantina di stelle oltre dieci volte più massive del nostro Sole. La radiazione ultravioletta emessa da queste stelle ha effetti drammatici sulla nube da cui si sono formate e sui dischi protoplanetari (dischi di gas e polveri che orbitano attorno stelle giovani, e da cui si possono formare sistemi planetari) vicini. In una serie di articoli, il team di ricercatori guidato dall’astronomo Mario Giuseppe Guarcello dell’Osservatorio astronomico dell’Inaf di Palermo, ha sviscerato in ogni suo aspetto la popolazione dell’ammasso. Primo, ha realizzato un’accurata classificazione delle stelle associate a Ngc 6611 e le regioni esterne della Nebulosa dell’Aquila. Secondo, ha caratterizzato la popolazione stellare dell’ammasso. Terzo, ha provato che le stelle massive di Ngc 6611 provocano una rapida erosione dei dischi protoplanetari delle stelle nel nucleo dell’ammasso, influenzando le possibilità che questi possano formare sistemi planetari. Quarto, ha verificato l’esistenza di una direzione lungo la quale è avanzata la formazione stellare nella nebulosa. Quinto, ha studiato le proprietà coronali delle stelle associate a Ngc 6611. Infine, ha identificato una popolazione di stelle con disco protoplanetario osservate grazie alla luce stellare diffusa lungo la direzione di vista dalle polveri associate ai dischi.
Redazione Media Inaf

L’eredità di Planck

Era il 21 marzo 2013 . Scienziati e giornalisti scientifici da tutto il mondo si erano riuniti nella sede dell’Agenzia spaziale europea (Esa) – o si erano collegati  online  – per partecipare al momento in cui la  missione è  stata svelata la sua “immagine” del cosmo . Un’immagine impossibile con la luce visibile ma con le microonde. La luce della luna è inferiore al millesimo di millimetro, la radiazione che sta rilevando misurava onde più lunghe, da pochi decimi di millimetro a pochi millimetri. Ed era una radiazione emessa quando l’universo ebbe inizio.
L’espressione che si usa per indicare questa radiazione nel suo complesso è  fondo cosmico a microonde, o Cmb (dall’inglese  fondo cosmico a microonde ). Misurando le differenze quasi impercettibili che questa radiazione presenta da una regione all’altra del cielo, era possibile leggere nell’immagine determinata da Planck l’età, l’espansione, la storia e il contenuto dell’universo. Niente di meno che il progetto del cosmo
Le attese degli astronomi erano ben note. Già dovute missioni della NASA, Cobe nei primi anni Novanta e Wmap nel decennio successivo, hanno lavorato analoghe ricognizioni del cielo, ottenendo come risultato immagini simili. Immagini, però, che non hanno la precisione e la nitidezza di quelle prodotte da Planck. Grazie per la tua visione avremmo potuto cogliere l’impronta universale primordiale a un livello di dettaglio mai prima prima.
Tutto dipende da quello. Se il nostro modello dell’universo è corretto, Planck lo ha dichiarato con un’accuratezza senza precedenti. Se invece fosse risultato sbagliato, gli scienziati sarebbero stati ripartire da zero.

Un universo quasi perfetto: le  release  del 2013 e del 2015

Quando l’immagine venne rivelata, i dati confermarono il modello. Combaciavano così bene con le nostre attese da non lasciarci che una sola conclusione possibile: quello che è stato puntato sull’epoca “un universo quasi perfetto”. Perché  quasi  perfetto? Perché rimanevano comunque alcune anomalie, sulle quali si sarebbero concentrate le ricerche successive.
Trascorsi cinque anni, il consorzio di Planck ha oggi reso pubblica la cosiddetta  release di dati legacy : l’ultima – definitiva – versione dei dati. Il messaggio rimane lo stesso di allora, ed è ancora più forte.
“È questo il principale lascito di Planck”, dice  Jan Tauber , scienziato del progetto Planck  dell’Esa. “Il modello standard della cosmologia ha superato, un oggi, tutti i test. E le misurazioni che lo dimostrano le haute planck “.
Alla base di tutti i miei modelli cosmologici c’è la teoria della relatività generale di Albert Einstein. Per riconciliare le equazioni relativistiche generali con il raggio gamma di osservazioni, il modello standard della cosmologia include l’intervento di due componenti sconosciute. Primo, Una materia Che attrae, nota vieni  materia oscura fredda  ( materia oscura fredda ): un Differenza della materia ordinaria, non interagisce con la luce. Secondo, Una forma di Energia Che respinge, nota vieni  Energia oscura  ( energia oscura): è la responsabile dell’espansione dell’accelerata dell’universo. Insieme alla materia ordinaria che conosciamo, queste due componenti sono risultate essenziali per spiegare il cosmo. Ma si tratta di componenti esotiche: ancora non so cosa sono veramente
Lanciato nel 2009, Planck ha raccolto dati fino al 2013. La sua prima  uscita  – quella all’origineigine dell’universo quasi – risale alla primavera di quell’anno. Si basava solo sulla temperatura della radiazione cosmica di fondo a microonde, e usava solo la prime due  survey  a tutto il cielo della missione. Erano Dati Che fornivano also un’ulteriore prova dell’ Inflazione, la primissima fase di espansione accelerata del cosmo, avvenuta nelle frazioni di secondo inizio della storia dell’universo, in corso le quali vennero sparsi i semi di tutte le future strutture cosmiche. Offrendo una misura quantitativa della distribuzione relativa alle fluttuazioni primordiali, Planck ha fornito la migliore conferma mai dallo scenario inflazionistico.
Oltre a produrre la mappa in temperatura del fondo cosmico a microonde con un’accuratezza senza precedenti, Planck ha misurato la polarizzazione di quella radiazione: una caratteristica che indica se le onde di luce vibrano in una direzione preferenziale. La polarizzazione del fondo cosmico a microonde contiene l’impronta dell’ultima azione avvenuta tra la radiazione e le particelle di materia presenti nell’universo primordiale: porta con sé informazioni aggiuntive e cruciali sulla storia del cosmo. Ma potrebbe anche contenere informazioni sui primissimi istanti del nostro universo, offrendoci dunque indizi per comprenderne la nascita.
La seconda  releaseprodotta nel 2015, raccoglieva tutti i dati raccolti durante l’intera durata della visita, dunque in totale otto  sondaggio tra  cielo. Oltre ai dati in temperatura, conteneva anche i dati in polarizzazione, ma erano accompagnati da un’avvertenza. «Sentivamo che la qualità di alcuni dati di polarizzazione non era buona al punto da poterli impiegare per la cosmologia», ricorda Tauber. Ovviamente ciò non è impedito di usarli anche per la cosmologia, aggiunge, ma alcune delle considerazioni sono tali da giungere all’epoca come richiesto correttamente, ed erano dunque da maneggiare con cautela.
Proprio in questo sta la grande novità della  release finale, questa del 2018. Ora che il consorzio di Planck è una nuova interpretazione dei dati, la maggior parte delle considerazioni è scomparsa: gli scienziati hanno ora la certezza che è la polarizzazione sono determinati in modo accurato. «Finalmente si può usare un modello cosmologico basato sulla temperatura o sulla polarizzazione. E tutti tre », afferma  Reno Mandolesi dell’Università di Ferrara e associato Inaf,  ricercatore principale  dello strumento Lfi (Low Frequency Instrument di Planck.
«Dal 2015 a oggi, altri esperimenti hanno raccolto dati astrofisici, e nuove analisi cosmologiche sono state condotte, combinando le osservazioni della Cmb una scala piccola con quelle di galassie, ammassi di galassie e supernove. Nella maggior parte dei casi hanno rafforzato il modello di Planck e il modello cosmologico sostenuto da Planck », spiega  Jean-Loup Puget, l’  Istituto astrofisico spaziale di Orsay (Francia),  ricercatore principale  dello strumento HFI di Planck.
«Si conclude una missione di grande successo, commenta  Barbara Negri, responsabile dell’Unità esplorazione e osservazione dell’universo dell’Asi. «L’Italia ha partecipato in modo significativo alla ricerca con il monitoraggio e la pre-amplificazione criogenica per il secondo argomento HFI. L’Asi ha fornito un importante supporto alla comunità scientifica coinvolta guidata dal  principale investigatore italiano dello strumento Lfi, Reno Mandolesi, e da Paolo de Bernardis per la partecipazione allo sviluppo HFI, e ha finanziato l’industria italiana per lo sviluppo della strumentazione scientifica » .

Un enigma irrisolto: il valore della costante di Hubble

È un risultato impressionante: significa che i cosmologi possono essere certi che la loro descrizione dell’universo come un luogo fatto di materia ordinaria, materia oscura fredda ed energia oscura, popolato da strutture il cui seme è stato gettato durante una fase iniziale d’espansione inflazionaria, è in gran parte corretta. Rimangono però alcune stranezze che risultano una spiegazione. Una in particolare è legato all’espansione dell’universo. Un’espansione il cui è il dato dalla definizione di  costante di Hubble .
Per calcolare la costante di Hubble, gli astronomi hanno tradizionalmente fatto affidamento a distanze calibrate presenti nel cosmo. È possibile che la stimolazione in modo indipendente sia stimata in modo indipendente. È una tecnica ben collaudata, sviluppata nel corso del secolo scorso dal lavoro pionieristico di Henrietta Leavitt e passati  applicati, alla fine degli anni Venti, da  Edwin Hubble  e dai suoi collaboratori, che si avvalgono di stelle variabili in galassie distanti e altre riprese riuscirono a dimostrare come l’universo si sta espandendo.
Hubble ha preso il nome, il telescopio spaziale Hubble della NASA e dell ‘ Esa – è  73,5 km / s / Mpc , con un’incertezza di appena il dovuto per cento. L’esoterica unità di misura è la velocità dell’espansione in km / s per ogni antico di parsec (Mpc) di separazione nello spazio, dove un parsec equivale a 3,26 anni luce.
Un secondo metodo per ottenere una stima della stabilità di Hubble si intuisce invece del modello cosmologico che meglio si adatta all’immagine del fondo cosmico a microonde cosmica – quindi a una rappresentazione dell’universo quand’era molto giovane – per fornire una previsione del valore che la costante di Hubble dovrebbe avere oggi. Ebbene, applicato ai dati di Planck questo metodo è un valore più basso:  67,4 km / s / Mpc. E con un margine d’incertezza assai ridotto, inferiore all’uno per cento. Ora, se da una parte è straordinario che ha radicalmente diverso per derivare la costante di Hubble – uno che si basa sull’universo locale e già maturo, l’altro sull’universo distante e ancora in fasce – arrivino i valori simili, considerazione d’altra parte che, in linea di principio, rappresenta l’insieme dei segni d’errore, corrispondente. Ma così non sembra essere. Da qui la ” tensione “, l’anomalia. E la domanda diventa: come conciliare questi due risultati?
Entrambe le parti in causa sono convinte che si tratti di errori nei confronti di metodi per misurare la discrepanza. È quindi possibile che ci sia qualcosa di un po ‘particolare nel nostro ambiente cosmico locale, qualcosa che renda la riflessione nell’ambiente vicino in qualche modo anomala? Per esempio, credo che la nostra galassia si trova in una regione universitaria per cui è molto meno sul media, e questo potrebbe avere qualche effetto sul locale della costante di Hubble. Ma sfortunatamente la maggior parte degli astronomi ritiene che simili peculiarità non siano grandi a sufficienza per risolvere il problema.
«Non esiste una soluzione astrofisica soddisfacente in grado di spiegare la discrepanza. Dunque è forse una nuova fisica ancora da scoprire », dice  Marco Bersanelli  dell’Università di Milano,  vice investigatore principale  dello strumento Lfi. Per “Nuova fisica” s’intende che particelle o forze esotiche possono influenzare i risultati.
Tuttavia, ciò che è successo di più, è una linea di pensiero, perché è adattano così bene alla maggior parte delle osservazioni. «È molto difficile includere una nuova fisica che allevi la tensione è, al tempo stesso, una preoccupazione la descrizione precisa offerta dal modello standard per tutto il resto, che già esistono», spiega François Bouchet  dell’Istituto di astrofisica spaziale di Orsay,  vice investigatore principale  dello strumento Hfi.
Di conseguenza, nessuno è in grado di misurarsi, e il punto interrogativo rimane.
«Meglio, per ora, non entusiasmarci troppo alla possibilità di nuova fisica: potrebbe benissimo essere che la discrepanza, piccola, possa essere spiegata da una combinazione di piccoli errori ed effetti locali. Dovrai comunque migliorare le nostre misurazioni e pensare a modi per spiegarla », conclude Tauber.
Questa è dunque l’eredità di Planck: con il suo universo quasi perfetto, la ricerca ha offerto ai ricercatori una conferma dei loro modelli, tutti i dettagli sono irrisolti sui quali cimentarsi. In altre parole: il meglio di entrambi i mondi.

 

Voci precedenti più vecchie