Tutta la vita in una molecola

Un recente studio ha dimostrato che le molecole organiche complesse, che sono alla base delle cellule e quindi anche della vita sulla Terra, si sono create nella fase di formazione stellare, sopravvivendo a tutto il processo e continuando a formarsi anche successivamente. Molecole organiche complesse come la formammide, (con cui vengono prodotti zuccheri, carboidrati, aminoacidi e acidi nucleici essenziali a tutti noi), compaiono nelle regioni in cui stelle simili al nostro Sole e sono nate miliardi di anni fa. Allo studio, guidato da astrofisici spagnoli, hanno partecipato anche ricercatori italiani dell’INAF. Gli autori dello studio hanno rilevato la biomolecola in cinque nuvole protostellari e hanno proposto che possa essersi formata su minuscoli granelli di polvere.

La Nebulosa NGC1333, una delle regioni di formazione stellare dove è stata rilevata la formammide. Crediti: NASA-Spitzer

La formammide è un composto costituito da idrogeno, carbonio, ossigeno e azoto, ed è stato individuato in enormi nubi presenti in quantità abbondanti nello spazio così come nella nostra galassia. Come sappiamo, uno degli obiettivi più importanti della ricerca scientifica nello spazio è capire come è nata la vita sul nostro pianeta, così come si sono formate le diverse protomolecole nel cosmo. La formammide (NH2CHO) è un ottimo candidato per aiutare i ricercatori a trovare delle risposte. La molecola è presente soprattutto nelle nubi molecolari o negli agglomerati di gas e polvere da cui nascono le stelle. E proprio questo è stato confermato dal team internazionale di ricercatori dopo aver cercato la formammide in dieci regioni di formazione stellare.  «Abbiamo rilevato la formammide in cinque protosoli, il che dimostra che questa molecola (con ogni probabilità anche per il nostro Sistema solare) è relativamente abbondante nelle nubi molecolari e si forma nei primissimi stadi di evoluzione della stella e dei suoi pianeti», ha spiegato Ana López Sepulcre, autrice principale dello studio e ricercatore presso l’Università di Tokyo (Giappone). Gli altri cinque oggetti osservati e dove la biomolecola non è stata rilevata erano meno evoluti e più freddi, «il che indica che è necessaria una minima temperatura affinché la molecola stessa venga rilevata nel gas», ha aggiunto la scienziata. Lo studio “Shedding light on the formation of the pre-biotic molecule formamide with ASAI” è stato pubblicato su Monthly Notices of the Royal Astronomical Society. Gli esperti sono riusciti a spiegare, almeno in parte, anche come la formammide si possa essere formata in ambienti interstellari. «La nostra proposta è che si formi sulla superficie dei grani di polvere delle nubi molecolari di acido isocianico (HNCO), da un processo di idrogenazione o aggiunta di atomi di idrogeno», ha spiegato López Sepulcre. In questo modo la molecola «rimane attaccata al granello di polvere fino a quando raggiunge temperature tanto elevate da provocarne la sublimazione», cioè quando la protostella è già nella fase avanzata della sua formazione. La ricercatrice ha aggiunto: «E’ proprio in questo momento che la possiamo rilevare con i radiotelescopi». In questo caso specifico il team di ricercatori si avvalso dell’ausilio di un radiotelescopio di 30 metri di diametro presso l’Institut de Radioastronomie Millimétrique (IRAM), in cima al Pico del Veleta in Sierra Nevada. Lo strumento fa parte del progetto Astrochemical Surveys At IRAM (ASAI). Quando si parla di molecole prebiotiche analizzate nello spazio, la formammide non è l’unica protagonista. Proprio questo mese, infatti, su Nature è stato pubblicato uno studio sul rilevamento di cianuro di metile o acetonitrile (CH3CN) attorno alla giovane stella MWC 480, già in nella fase di nebulosa protoplanetaria. «L’altro studio dimostra che le molecole complesse sopravvivono fino agli ultimi stadi della formazione stellare e oltre», ha specificato la prima autrice affermando che in ogni caso la formammide presenta dei vantaggi. Ecco quali: «Contiene ossigeno (ovviamente essenziale per la vita) ed è un forte candidato» per vincere la medaglia di «precursore di materiale prebiotico, in quanto non solo porta alla formazione di aminoacidi (il che accade anche con CH3CN), ma anche di acidi nucleici e basi nucleiche, o di altro materiale genetico». La ricercatrice ha concluso: «Questo dà forza al nostro studio: la formammide era già presente nelle regioni in cui stelle come il nostro Sole si formarono e in quantità relativamente elevate». Di recente un altro studio italiano pubblicato sulla rivista dell’Accademia delle Scienze degli Stati Uniti (Pnas) ha preso in analisi le molecole che hanno portato la vita sulla Terra. La ricerca ha mostrato che grazie al vento solare le molecole organiche complesse (proprio come la formammide) potrebbero essersi formate nel cosmo per poi essere state trasportate sul nostro pianeta dando il via alla nostra vita. In questo caso l’esperimento è stato condotto in laboratorio, presso l’Istituto Congiunto di Ricerca Nucleare di Dubna, dove gli acceleratori riproducono fasci di protoni ad alta energia essendo i principali costituenti della radiazione cosmica e del vento solare. Per arrivare al loro risultato, il gruppo di ricercatori guidato da Raffaele Saladino, dell’Università della Tuscia, ha esposto ai fasci di particelle una miscela di polveri di meteoriti e formammide e poi è stata osservata la formazione delle sostanze presenti nelle cellule che sono alla base della nostra esistenza. Nella foto: la Nebulosa NGC1333, una delle regioni di formazione stellare dove è stata rilevata la formammide. Crediti: NASA-Spitzer.
di Eleonora Ferroni (INAF)

Svelato il Polo Nord di Cerere

E’ valsa la pena di aspettare. Dopo quasi un mese di silenzio, la sonda Dawn della NASA ha ricominciato ad inviare immagini da Cerere, il primo pianeta nano mai visitato da una sonda spaziale. Quelle che stanno arrivando dalla fascia degli asteroidi, sono immagini che tolgono il respiro e che anticipano quello che accadrà nei prossimi mesi. Durante la fase di avvicinamento denominata OpNav6, il 10 Aprile scorso, da una distanza di 33.000Km, la camera ad alta risoluzione ha catturato i primi scatti del polo nord di Cerere illuminato , rimontati nel filmato pubblicato qui accanto (clicca sull’immagine per vedere il filmato). Dire polo nord non è poco, considerando che la determinazione dell’esatta posizione dei poli è stata effettuata dal team di Dawn solo molto recentemente, proprio grazie ai primi dati raccolti dalla sonda. Non c’è da stupirsi, se consideriamo che fino a pochi mesi fa, Cerere era una macchia di luce vaga e indistinguibile, osservata in passato solo dal Telescopio Hubble. Oggi sappiamo che Cerere orbita con un periodo di pochi minuti superiore a 9 ore terrestri intorno a un asse che punta, nella direzione nord, in una zona del cielo situata nel Drago. Il polo sud punta verso la poco nota costellazione del Pesce Volante. Sappiamo anche che l’asse di Cerere è molto meno inclinato a confronto con quello terrestre, inclinato di 23° rispetto alla direzione ortogonale all’eclittica (il piano dell’orbita della Terra intorno al Sole). Quest’ultimo dato è molto importante perchè un’inclinazione limitata minimizza gli effetti stagionali: durante l’anno cereriano (che dura 4,6 anni terrestri), il Sole si sposta di soli 4 gradi a nord e a sud sulla superficie del pianeta e le stagioni sono molto meno evidenti che sulla Terra, dove l’inclinazione comporta i cambiamenti che ben conosciamo. Altra conseguenza importante, è una illuminazione ottimale, che permetterà a Dawn di scattare bellissime immagini di Cerere, visto che il Sole illumina il pianeta nano da una posizione sempre vicino all’equatore. Ad eccezione delle eventuali ombre causate dalla topografia locale, si calcola che oltre il 99% della superficie del pianeta nano è esposta alla luce del Sole ogni giorno. Queste condizioni ottimali verranno sfruttate al meglio nelle fasi scientifiche della missione, che inizieranno con l’orbita RC3 (dove RC sta per Rotation Characterization) il 23 aprile, quando Dawn si troverà ad una distanza da Cerere di 13.500 Km. La fase scientifica della missione durerà in tutto 14 mesi e, come per Vesta,  prevederà varie orbite quasi circolari e polari a diverse altitudini e orientazioni che permetteranno agli strumenti di studiare sempre più da vicino il pianeta nano. Dopo l’orbita RC3, che si concluderà il 9 Maggio, Dawn inizierà una fase di avvicinamento che la porterà a 4.400Km dal suolo, nell’orbita Survey. Durante questa fase, la sonda acquisirà mappe globali a risoluzione più elevata con la camera e con VIR, lo spettrometro italiano fornito da ASI e realizzato da Selex Galileo con la guida scientifica del’INAF. La missione continuerà poi a 1.480 km da Cerere in una fase chiamata HAMO (High Altitutde Mapping Orbit) che avrà inizio ad Agosto 2015, raccogliendo mappe e dati a risoluzione crescente e immagini “stereo” per ricostruire la superficie in 3D. Per avere un ordine di grandezza, la risoluzione della camera passerà dall’orbita Survey a quella HAMO da circa 70 a 200 volte la risoluzione con cui Hubble ha ritratto Cerere (vedi immagine qui sotto per la risoluzione della camera nelle varie fasi). Infine, inizierà l’orbita più ravvicinata, la LAMO (Low Altitutde Mapping Orbit) a una distanza di appena 375 chilometri. Quest’ultima fase è specificamente progettata per acquisire dati con lo strumento GRaND e studiare la gravità del pianeta nano.
di Livia Giacomini (INAF)

Galassie con la morte nel cuore

Rosse e morte, come foglie d’autunno. Red and dead: così gli astronomi definiscono le grandi galassie ellittiche, le più massicce fra quelle dell’Universo vicino, a sottolineare quanto siano ricche di stelle rosse – vecchie miliardi di anni – ma al tempo stesso povere di giovani stelle blu, quelle che segnalano processi di formazione stellare in corso. Rosse e morte, dunque, ma com’è accaduto? La domanda è ancora aperta, e costituisce uno fra i più importanti problemi dell’astrofisica contemporanea. Però da oggi i ricercatori hanno un indizio in più. Un indizio cruciale. Grazie a una serie d’osservazioni condotte su 22 galassie con il Very Large Telescope dell’ESO e con il telescopio spaziale Hubble di ESA e NASA, un team di astronomi è riuscito a ricostruire il percorso dell’estinzione, il tragitto lungo il quale l’arresto della formazione stellare è andato propagandosi: dal centro alla periferia, come mostrato nella figura qui sotto.

In questo diagramma, il processo descritto dallo studio su Science. A sinistra le galassie più antiche, con la colorazione blu evidenziare le regioni con formazione stellare ancora attiva. In rosso, invece, le regioni ormai sterili, dove rimangono ormai solo vecchie stelle rosse, come nello sferoide gigante dell'universo attuale, rappresentato a destra. Crediti: ESO

Ma perché è così importante stabilire il cammino seguito da queste antiche e colossali galassie – dette anche “sferoidi” per la loro forma caratteristica – nella loro involuzione verso lo spegnimento? «Questi sferoidi, morti e massicci, contengono circa la metà di tutte le stelle che l’Universo ha prodotto nell’intero arco della sua esistenza», spiega Sandro Tacchella dell’ETH di Zurigo, primo autore dello studio appena pubblicato su Science. «Non possiamo affermare d’aver compreso come è evoluto l’Universo, e come è diventato come lo vediamo oggi, senza aver prima capito come si sono formate queste galassie». Ebbene, da una stima dell’età delle stelle rosse si deduce che le galassie che le ospitano hanno smesso di produrre nuove stelle circa dieci miliardi di anni fa. Un arresto iniziato, dunque, proprio in concomitanza con l’apice del tasso di formazione stellare nell’Universo, quando molte galassie ancora stavano formando stelle a un ritmo circa venti volte superiore a quello attuale. E iniziato a partire dalle regioni centrali. «Questa progressione dell’arresto della formazione stellare nelle galassie massicce, dall’interno verso l’esterno, può aiutarci a far luce sul meccanismo fisico che provoca lo “spegnimento” della formazione di nuove stelle, sul quale gli astronomi stanno dibattendo da tempo», osserva Alvio Renzini, dell’Osservatorio astronomico dell’INAF di Padova, fra i coautori dello studio (fra gli astronomi dell’INAF che hanno preso parte alla ricerca, oltre a Renzini, ci sono anche Gianni Zamorani dell’Osservatorio astronomico di Bologna, Giovanni Cresci dell’Osservatorio astrofisico di Arcetri e Chiara Mancini, sempre dell’Osservatorio astronomico di Padova). Ma perché scoprire che l’esaurirsi della formazione stellare ha avuto inizio nelle regioni centrali rappresenta un passo così importante nella ricostruzione del meccanismo di spegnimento? Un motivo è che le due principali famiglie di modelli attualmente in gara per spiegare cosa abbia interrotto la formazione stellare si contrappongono, a loro volta, per il luogo d’origine del processo scatenante. Origine esterna nel caso fosse corretta l’ipotesi secondo la quale, a fermare la produzione di nuove stelle, sarebbe stato il venir meno dell’afflusso di gas fresco verso la galassia, privandola così del combustibile necessario. Origine interna, invece, se i materiali necessari alla produzione di nuove stelle fossero stati dispersi ed espulsi, come sostiene una teoria fra le più accreditate, dall’enorme energia emessa dal buco nero supermassiccio al centro della galassia stessa. «La scelta fra questi due meccanismi – espulsione del gas o taglio della fornitura – è un discorso ancora aperto», dice Renzini a Media INAF, «e c’è chi pensa che potrebbero essere necessari entrambi, affinché la formazione stellare abbia termine». Nessun dubbio, invece, sulle prestazioni dei due strumenti chiave di questo risultato scientifico. Da una parte, la camera WFC3 a bordo di Hubble, le cui immagini nel vicino infrarosso hanno permesso di ricostruire la distribuzione spaziale delle stelle più vecchie all’interno delle galassie con attività di formazione stellare. Dall’altra, lo spettrografo SINFONI del VLT, grazie al quale si sono potute individuare con precisione le regioni di formazione di nuove stelle. Una precisione impossibile da raggiungere se non fosse stato per una tecnologia, nota come ottica adattiva, ideata per rendere i telescopi terrestri competitivi con quelli spaziali. «La cosa sorprendente», commenta infatti, Marcella Carollo, lei pure all’ETH di Zurigo e coautrice dello studio, «è come il sistema di ottica adattiva di SINFONI riesca ad abbattere gran parte degli effetti dell’atmosfera e a raccogliere informazioni su dove stanno nascendo nuove stelle. E che riesca a farlo con lo stesso, identico, livello di precisione raggiunto da Hubble nella misura della distribuzione di massa stellare».
Nel diagramma la cronistoria ricostruita dallo studio su Science. A sinistra le galassie più antiche, con la colorazione blu a evidenziare le regioni con formazione stellare ancora in atto. In rosso, invece, le regioni ormai sterili, dove rimangono solo vecchie stelle rosse, come nello sferoide gigante dell’universo attuale rappresentato sulla destra. Crediti: ESO
di Marco Malaspina (INAF)

Buco nero dall’intenso campo magnetico

L’Atacama Large Millimeter/submillimeter Array (ALMA) dell’ESO in Cile ha rivelato un campo magnetico molto potente, molto più di tutti quelli finora trovati nel cuore delle galassie, vicino all’orizzonte degli eventi di un buco nero supermassiccio. Questa nuova osservazione aiuta gli astronomi a capire la struttura e la formazione dei massicci abitanti del centro delle galassie e i getti gemelli di plasma ad alta velocità che essi spesso emettono dai poli. I risultati saranno pubblicati sulla rivista Science. I buchi neri supermassicci, spesso con masse miliardi di volte quella del nostro Sole, si trovano nel cuore di quasi tutte le galassie dell’Universo. In questi buchi neri può accrescere materia in enormi quantità per mezzo di un disco che li circonda. Mentre la maggior parte della materia cade sul buco nero, parte può sfuggire appena prima della cattura ed essere lanciata nello spazio a velocità vicine a quella della luce, sotto forma di un getto di plasma. Come questo accada è ancora un mistero, anche se si pensa che proprio i forti campi magnetici abbiano un ruolo cruciale nel processo, aiutando la materia a sfuggire dalle fauci spalancate dell’oscurità. Finora sono stati indagati solo deboli campi magnetici, lontani – fino a diversi anni luce – dai buchi neri. Campi magnetici molto più deboli sono stati trovati nelle vicinanze del buco nero supermassiccio, ma relativamente quieto, che si trova al centro della Via Lattea. Osservazioni recenti hanno anche svelato campi magnetici deboli nella galassia attiva NGC 1275, rivelati a lunghezze d’onda millimetriche. In questo studio, invece, gli astronomi della Chalmers University of Technology e dell’Onsala Space Observatory in Svezia hanno usato ALMA per rilevare segnali direttamente legati a un forte campo magnetico molto vicino all’orizzonte degli eventi del buco nero supermassiccio di una galassia lontana chiamata PKS 1830-211. Questo campo magnetico si trova esattamente nel luogo in cui la materia viene improvvisamente lanciata via dal buco nero sotto forma di getto. L’equipe ha misurato la forza del campo magnetico studiando il modo in cui la luce è polarizzata, mentre si allontana dal buco nero. “La polarizzazione è una proprietà importante della luce e viene usata molto anche nella vita quotidiana, per esempio negli occhiali da sole o negli occhiali 3-D al cinema”, ha commentato Ivan Marti-Vidal, primo autore dell’articolo. “Quando viene prodotta in natura, la polarizzazione può essere usata per misurare i campi magnetici, poiché la luce cambia la sua polarizzazione quando attraversa un mezzo magnetizzato. In questo caso, la luce che vediamo con ALMA ha attraversato un materiale molto vicino al buco nero, una zona piena di plasma altamente magnetizzato”. Gli astronomi hanno applicato ai dati ALMA una nuova tecnica di analisi da essi stessi sviluppata e hanno trovato che la direzione del piano di polarizzazione della radiazione che proviene dal centro di PKS 1830-211 era ruotata. I campi magnetici introducono la rotazione di Faraday, che fa ruotare il piano di polarizzazione in modi diversi a diverse lunghezze d’onda. Il modo in cui questa rotazione dipende dalla lunghezza d’onda ci dà informazioni sul campo magnetico nella regione. Queste sono le lunghezze d’onda più corte mai usate per questo tipo di studio, che permette di sondare le regioni molto vicine al buco nero centrale. Le osservazioni con ALMA sono state effettuate a una lunghezza d’onda efficace di circa 0,3 millimetri, mentre quelle precedenti a lunghezze d’onda radio molto più lunghe. Solo la luce di lunghezza d’onda millimetrica può sfuggire dalle regioni più vicine al buco nero, mentre le radiazioni di lunghezza d’onda maggiore sono assorbite. “Abbiamo trovato un chiaro segnale di rotazione del piano della polarizzazione, un segnale centinaia di volte superiore al più alto mai trovato nell’Universo”, ha concluso Sebastien Muller, co-autore dello studio. “La nostra scoperta è un balzo gigante in termini di frequenza di osservazione, grazie all’uso di ALMA, e in termini della distanza dal buco nero a cui viene sondato il campo magnetico – dell’ordine di alcuni giorni-luce dall’orizzonte degli eventi. Questi risultati, e gli studi futuri, ci aiuteranno a capire cosa stia realmente accadendo nell’immediata vicinanza di un buco nero supermassiccio”.
Per saperne di più:
CLICCA QUI per leggere il comunicato stampa in italiano

 

L’età della Luna? 4,47 miliardi di anni

Il più violento impatto avvenuto nelle prime fasi di formazione del Sistema solare interno, quasi cinque miliardi di anni fa, è quello da cui si è formata la Luna, il nostro satellite. Individuare con precisione quando questo titanico scontro tra corpi celesti primordiali – la proto Terra sulla quale ha impattato altro proto pianeta di massa più piccola – è però un compito tutt’altro che scontato. Anche la strada che poteva apparire più semplice, quella cioè di datare i numerosi di campioni di roccia lunare riportati a Terra dalle missioni Apollo, ad oggi non ha restituito risultati unanimemente accettati dalla comunità scientifica internazionale. Numerosi sono gli studi che provano a dirimere la delicata questione, analizzando il problema da punti di vista diversi e utilizzando differenti metodologie d’indagine. Dell’ultimo in ordine di tempo ne avevamo dato notizia solo qualche giorno fa anche qui su Media INAF.
Una nuova indagine, guidata da Bill Bottke dell’Institute for the Science of Exploration Targets (ISET) presso il Southwest Research Institute negli Stati Uniti e appena pubblicata sulla rivista Science fornisce un nuovo contributo sulla dibattuta vicenda. Stavolta provando ad ‘attaccare’ il problema da un’angolazione un po’ diversa.
I ricercatori partono infatti dal considerare che dallo scontro primordiale non si è solo venuto a formare un anello di materiali attorno alla proto Terra che poi, condensandosi, avrebbero dato origine alla Luna. Una frazione del materiale schizzato via nell’impatto, poco meno di un centesimo della massa della Terra, avrebbe avuto, come risulta da simulazioni al calcolatore, energia sufficiente per raggiungere addirittura la fascia degli asteroidi. Verosimilmente, una parte di questi proiettili, grandi anche qualche chilometro, si sarebbe a sua volta scontrata con alcuni degli asteroidi della fascia principale. Questa carambola spaziale sarebbe avvenuta, come risulta dalle simulazioni, a velocità molto maggiori di quelle che tipicamente si verificano negli urti reciproci tra asteroidi della fascia principale, lasciando nei materiali risultanti tracce indelebili dovute al grande calore sviluppato negli scontri.
Basandosi su questo scenario, i ricercatori hanno provato a ricavare grazie a simulazioni al calcolatore l’epoca in cui questi impatti secondari si sono verificati e l’intensità di questo bombardamento, confrontando i risultati con le informazioni di passati eventi di violenti riscaldamenti individuati in alcune meteoriti raccolte qui sulla Terra. I risultati che emergono da questo studio indicano per la Luna un’età di circa 4,47 miliardi di anni. In confronto, i più antichi materiali nel Sistema solare che abbiamo finora rinvenuto in alcune meteoriti sono di appena cento milioni di anni prima.
«La Luna è l’unico corpo celeste che l’umanità è riuscita a visitare di persona fino ad ora eppure, a dispetto delle visite effettuate e dei numerosi campioni riportati sulla Terra, il mistero della sua origine è un problema ancora attuale» commeta Diego Turrini, planetologo dell’INAF. «La teoria dell’impatto gigante ne spiega la nascita con un evento abbastanza “naturale” nella vita di un pianeta agli albori del Sistema solare e ci fornisce una finestra temporale in cui quest’ultimo dovrebbe avere avuto luogo. Nonostante questo, però, le incertezze sui tempi e i modi dell’impatto gigante sono ancora molte. Lo studio presentato in questo articolo ci offre una nuova prospettiva su questo problema. I meteoriti provenienti dalla fascia degli asteroidi portano infatti impressi nella loro composizione i ricordi degli eventi che hanno influenzato la loro vita e, guardando sufficientemente indietro nel tempo, gli autori dello studio sono stati capaci di trovare le tracce degli impatti causati dai frammenti strappati dalla Terra dall’impatto gigante. Oltre alla loro importanza per la datazione della nascita della Luna, questi risultati sono significativi perché ci mostrano come i diversi corpi del Sistema Solare siano indissolubilmente legati l’uno all’altro e come studiandoli nel loro insieme possiamo migliorare la nostra comprensione di ciascuno di essi».
di Marco Galliani (INAF)

Civiltà aliene: nessuna traccia nell’universo vicino (scansionate 100 mila galassie)

Se là fuori esiste una civiltà aliena tecnologicamente evoluta non lo possiamo certo sapere. Ma se ci fosse è probabile che l’emissione nel medio infrarosso dovuta al massiccio utilizzo di energia possa essere rilevata dai nostri telescopi.
Così suggeriva il fisico teorico Freeman Dyson nel lontano 1960: è plausibile che una civiltà sufficientemente evoluta da viaggiare nello spazio debba utilizzare considerevoli quantità di energia ricavate dalle stelle che popolano la sua galassia di appartenenza. Energia necessaria per alimentare la propria tecnologia, la flotta spaziale, le telecomunicazioni e chissà che diavolo non riusciamo a immaginare. Energia ben visibile nella lunghezza del medio infrarosso.
Ebbene un gruppo di ricercatori ha raccolto questa sfida e servendosi dei dati raccolti dal telescopio spaziale NASA WISE  ha deciso di fare la prova del nove, verificando le emissioni di 100.000 galassie nella fetta di universo a ridosso della Via Lattea.
«L’idea alla base della nostra ricerca – spiega Jason T. Wright del Center for Exoplanets and Habitable Worlds, Pennsylvania State University – è che, se un’intera galassia fosse colonizzata da una civiltà evoluta capace di muoversi agilmente nello spazio, l’energia prodotta dalle tecnologie aliene dovrebbe essere rilevabile nell’infrarosso, compito per il quale WISE è stato progettato ad hoc. Anche se finora i suoi dati sono stati utilizzati esclusivamente a fini astronomici».
Di ET però non c’è traccia: la scansione di 100.000 galassie ha dato esito negativo. Questi i risultati dello studio di G-HAT, la Glimpsing Heat from Alien Technologies Survey, appena pubblicati su The Astronomical Journal.
Roger Griffith, primo firmatario dello studio, ricercatore della Pennsylvania State University, assicura che il catalogo dati di WISE è stato perlustrato da cima a fondo. Quasi 100 milioni di voci, da cui sono state tirate fuori le 100 mila immagini migliori. Risultato: almeno 50 galassie presentano un’insolita attività nella radiazione media infrarossa. Se c’è qualche cosa che esce dalla norma lo dovremmo sapere a breve.
Nell’attesa ci portiamo a casa un risultato scientifico nuovo e interessante: nell’universo vicino non c’è traccia di civiltà aliene tanto evolute da popolare una galassia. E di tempo ne avrebbero avuto per sviluppare tecnologie d’avanguardia. «O gli extraterrestri non esistono, o non utilizzano ancora livelli di energia tali da essere individuati dai nostri telescopi», taglia corto Wright.
O forse, più semplicemente, se la godono comodi sul divano di casa.
di Davide Coero Borga (INAF)

Hickson 68 nei Cani da Caccia

Nel giornalino astronomico di aprile pubblicato su Astronomia.com a cura di Etruscastro si parla di NGC4826,  una galassia “semplice” e famosissima ma non per questo meno spettacolare, meglio nota come M 64 o, per gli “amici”, galassia “Occhio Nero”, e di Hickson 68, uno splendido gruppo di galassie visibile nella costellazione dei Cani da Caccia, formato da almeno 4 galassie osservabili, di cui la NGC 5350 è la componente principale. Faremo quindi riferimento a quest’ultima per rintracciare l’ammasso. Per ottenere tutte le informazione visita il sito Astronomia.com.

Voci precedenti più vecchie