Revival della Nebulosa Velo

Questa meravigliosa immagine scattata dal telescopio Hubble (NASA/ESA) ritrae una piccola sezione della Nebulosa Velo, osservata già 18 anni fa – nel 1997. Questa sezione del guscio esterno del famoso resto di supernova si trova in una regione conosciuta come NGC 6960 o – più colloquialmente – Nebulosa Scopa della strega. Dopo 18 anni, quindi, gli esperti sono tornati a fotografare la stessa regione con la Wide Field Camera 3 (WFC3) osservando la sezione con maggiori dettagli rispetto agli anni Novanta e rivelando la sua espansione negli ultimi anni.

Crediti: NASA, ESA, Hubble Heritage Team

Il nome “velo” deriva dalla sua struttura filamentosa particolarmente delicata (almeno in apparenza). La Nebulosa Velo è un antico resto di supernova e la stella che ha originato il tutto è esplosa 8000 anni fa: la stella in questione aveva 20 volte la massa del Sole e si trovava a 2100 anni luce dalla Terra nella costellazione del Cigno. Questa nuvola colorata si espande per circa 110 anni luce. L’immagine del 1997 è stata scattata con la Wide Field and Planetary Camera 2 (WFPC2). Dopo 18 anni, sovrapponendo lo scatto di WFPC2 con quello di WFC3, gli esperti hanno avuto la conferma della sua espansione. Nonostante la complessità della nebulosa e la sua distanza da noi, il movimento di alcune delle sue strutture è chiaramente visibile – in particolare i deboli filamenti di idrogeno che nell’immagine sono di colore rosso. Gli astronomi sospettano che prima dell’esplosione, la stella abbia generato un forte vento stellare, che soffiando ha creato una grande cavità nel gas interstellare circostante. E’ stata l’onda d’urto dalla supernova, espandendosi verso l’esterno, che ha formato le strutture distintive della nebulosa. I filamenti luminosi che possiamo ammirare in queste immagini sono il frutto dell’interazione dell’onda d’urto con questa intercapedine relativamente densa. I meravigliosi colori sono stati generati dalle variazioni di temperatura e densità degli elementi chimici presenti nella nebulosa. I filamenti blu delineano questa cavità creata dal vento stellare. Noscoste tra queste strutture luminose, ci sono i filamenti rossi sottili e “taglienti”, vale a dire emissioni di idrogeno più deboli, create attraverso un meccanismo completamente diverso da quello che genera i filamenti rossi più morbidi, e forniscono agli scienziati un’istantanea della portata dell’urto.
di Eleonora Ferroni (INAF)

Annunci

Il risveglio di Sagittarius A*

Dopo 15 anni di osservazioni, tre telescopi spaziali hanno rivelato un incremento dell’emissione di raggi X sotto forma dibrillamenti dal quieto, come è di solito, buco nero supermassiccio che risiede nel nucleo della Via Lattea. Gli scienziati stanno tentando di capire se si tratta di un comportamento “ordinario”, che non è stato rivelato prima a causa della mancanza di dati, o se, invece, questi brillamenti sono dovuti al recente passaggio ravvicinato di un misterioso oggetto composto di gas e polvere. I risultati di questo studio sono riportati su Monthly Notices of the Royal Astronomical Society. Dopo un lungo periodo di osservazioni, gli astronomi hanno potuto monitorare l’attività di Sagittarius A* (Sgr A*), grazie a tutta una serie di dati che sono stati raccolti dall’osservatorio spaziale Chandra, dal satellite XMM-Newton e dal satellite Swift. Sgr A* “pesa” poco più di 4 milioni di masse solari e i raggi X sono prodotti dal gas caldo che precipita verso il buco nero. Gli autori hanno analizzato i dati di 150 osservazioni che sono state eseguite, in particolare, da Chandra e XMM-Newton dal Settembre 1999 al Novembre 2014. I risultati suggeriscono un incremento della frequenza e luminosità dei brillamenti avvenuto subito dopo la metà del 2014, cioè alcuni mesi dopo il passaggio ravvicinato di un oggetto, molto probabilmente una nube di gas e polvere, denominato G2Le osservazioni indicano che Sgr A* sta producendo un brillamento X ogni 10 giorni. Ad ogni modo, nel corso dell’ultimo anno, c’è stato un incremento di 10 volte nel tasso di produzione dei brillamenti, circa uno al giorno. «Abbiamo monitorato per diversi anni l’emissione X di Sagittarius A*, tra cui il passaggio ravvicinato di G2», spiega Gabriele Ponti del Max Planck Institute for Extraterrestrial Physics in Germania e autore principale dello studio. «Circa un anno fa, pensavamo che questo oggetto non avesse alcun effetto su Sgr A* ma i nostri dati più recenti suggeriscono la possibilità che non sia così». Inizialmente, gli astronomi hanno ritenuto che G2 fosse una nube estesa di gas e polvere, così come è stato affermato più recentemente in un altro studio di alcuni ricercatori del Max Planck (vedasi l’articolo Si riapre il ‘caso G2’). Dopo il passaggio ravvicinato con Sgr A*, verso la fine del 2013, la sua apparenza non è cambiata molto, tranne per il fatto che l’oggetto è stato “allungato” dalla gravità esercitata dal buco nero. Da qui sono emerse delle teorie secondo cui G2 non è semplicemente una nube di gas, piuttosto si tratta di una stella avvolta in una sorta dibozzolo polveroso” esteso (vedasi l’articolo Risolto il mistero di G2 in cui uno studio americano sostiene invece che si tratti di una stella). «Non c’è un accordo comune su che cosa sia in definitva G2», diceMark Morris della University of California a Los Angeles e co-autore dello studio. «Tuttavia, il fatto che Sgr A* è diventato più attivo subito dopo il passaggio di G2 suggerisce che la materia che si è separata da questo oggetto può aver causato un aumento del tasso di rifornimento di altro materiale a favore del buco nero». Mentre il passaggio di G2 e l’aumento di raggi X da parte di Sgr A* è alquanto intrigante, gli astronomi osservano altri buchi neri che sembrano comportarsi in maniera simile al buco nero della Via Lattea. Dunque, è possibile che questo incremento di attività da parte di Sgr A* possa essere una caratteristica generale dei buchi neri e perciò non necessariamente correlata con il passaggio di G2. Ad esempio, l’aumento dell’attività X potrebbe essere dovuta ad una variazione dell’intensità dei venti stellari provenienti dalle vicine stelle massive che stanno alimentando il buco nero. «È ancora troppo presto per esserne sicuri, ma durante i prossimi mesi terremo un occhio attento all’emissione X da parte di Sgr A*», dice Barbara De Marco del Max Planck Institute e co-autrice dello studio. «Speriamo che ulteriori osservazioni ci diranno alla fine se G2 sarà davvero il responsabile dell’attività di Sgr A* o se, invece, essa sia parte di un comportamento tipico del buco nero». Insomma, se la spiegazione di G2 è corretta, l’incremento della luminosità dei brillamenti X potrebbe essere il primo segnale legato all’eccesso di materia che si è staccato dalla nube a causa del suo passaggio ravvicinato e ora sta cadendo verso il buco nero essendo catturato dalla sua enorme forza gravitazionale. A questo punto, esso potrebbe aver già iniziato ad interagire con il materiale caldo che a sua volta sta precipitando verso Sgr A*, alimentandolo sempre più di gas che alla fine sarà consumato dal buco nero.
di Corrado Ruscica (INAF)

NGC 1624-2 e il suo campo magnetico record

Recenti osservazioni effettuate utilizzando l’osservatorio a raggi X Chandra della NASA hanno rivelato che la magnetosfera della stella di tipo spettrale O nota con il nome NGC 1624-2 è insolitamente grande e ospita al suo interno una furiosa tempesta di vento stellare e plasma che fagocita i raggi Xprima che possano sfuggire nello spazio. I risultati del team di ricercatori guidato dalla professoressa Véronique Petit del Florida Institute of Technology potrebbero aiutare gli scienziati a comprendere meglio il ciclo di vita delle stelle massicce, che sono essenziali per la creazione di quegli elementi pesanti necessari a dar vita a nuove stelle e pianeti. L’articolo che descrive lo studio è stato pubblicato oggi sulla rivista Monthly Notices della Royal Astronomical Society della Oxford University Press. La stella massiccia è di tipo O, la classe spettrale più calda e più brillante dell’Universo, e ha la più grande magnetosfera che sia mai stata osservata per la sua categoria. Petit e i suoi colleghi hanno scoperto che il gas intrappolato dalle linee di campo magnetico di NGC 1624-2 assorbe i suoi stessi raggi X prima che questi riescano ad essere rilasciati nello spazio. La stella emette un vento 3-5 volte più veloce e almeno 100.000 volte più denso di quello del nostro Sole. Tale vento si aggancia con violenza al campo magnetico e le particelle intrappolate creano un’enorme aura di plasma caldo e molto denso. «Il campo magnetico non permette al vento di allontanarsi dalla stella, perciò osserviamo questi grandi flussi, costretti a scontrarsi all’altezza dell’equatore magnetico. In questa zona si viene a creare una regione di gas riscaldato a temperature pari a 10 milioni di gradi Kelvin, che emette grandi quantità di raggi X», ha detto Petit, che faceva anche parte del team di scienziati responsabile della scoperta della stella, nel 2012. «Ma la magnetosfera è così grande che l’80% di questi raggi X vengono assorbiti prima di essere in grado di muoversi liberamente nello spazio e raggiungere il telescopio Chandra». Il campo magnetico superficiale di NGC 1624-2 è 20.000 volte più intenso rispetto a quello del nostro Sole. Se NGC 1624-2 si fosse trovata al centro del nostro sistema solare, gli anelli di plasma denso e caldo si estenderebbero quasi fino all’orbita di Venere. Solo una stella massiccia su dieci possiede un campo magnetico. A differenza delle stelle più piccole, che sono in grado di generare magnetismo attraverso una dinamo interna, le stelle massicce hanno tipicamente campi magnetici “fossili”, frutto di qualche evento avvenuto nelle sue prime fasi di vita, magari una collisione con un’altra stella. Petit e il suo team avranno informazioni più dettagliate su NGC 1624-2 nel mese di ottobre, ovvero quando otterranno  i dati raccolti dal telescopio spaziale Hubble, incaricato di esplorare le complesse dinamiche del suo vento.
di Elisa Nichelli (INAF)

Stelle supersoniche nascoste nel centro galattico

E’ noto che il nucleo della Via Lattea sia un luogo misterioso. Non solo dista migliaia di anni luce da noi ma si trova immerso in una fitta coltre di polvere che la maggior parte delle stelle ivi presenti risultano invisibili. Oggi, però, un gruppo di ricercatori di Harvard ha proposto una nuova tecnica per osservare le stelle che sono immerse in questa sorta di “nebbia di polvere”: in altre parole, essi suggeriscono di cercare le onde radio che provengono dalle cosiddette “stelle supersoniche”. I risultati di questo studio sono riportati su Monthly Notices of the Royal Astronomical Society. «Conosciamo ancora poco il centro galattico e c’è tanto da imparare», afferma Idan Ginsburg del Harvard-Smithsonian Center for Astrophysics (CfA) e autore principale dello studio. «Grazie a questa tecnica, crediamo di poter trovare un certo numero di stelle che nessuno hai mai visto prima». Il lungo tragitto che parte dal centro della Via Lattea fino alla Terra è così pieno di polvere che per ogni trilione di fotoni di luce visibile, che si propagano lungo la nostra linea di vista, appena un fotone raggiunge i nostri telescopi. Le onde radio, però, che si originano da una differente parte dello spettro elettromagnetico, hanno energie più basse e lunghezze d’onda più lunghe. Queste proprietà fanno sì che esse sono in grado di attraversare gli enormi strati di polvere senza essere disturbate. Tuttavia, le stelle non sono così brillanti in banda radio da essere rivelate a queste distanze. Ma se una stella si muove attraverso il gas con una velocità superiore a quella del suono, la situazione cambia. Il materiale che vola via dalla stella sotto forma di vento stellare può perturbare il gas interstellare creando un’onda d’urto. Ora, grazie a un processo fisico chiamato radiazione di sincrotrone, gli elettroni accelerati da quell’onda d’urto producono una determinata radiazione che gli astronomi possono potenzialmente rivelarla nella banda radio. “In un certo senso, stiamo cercando l’equivalente cosmico di un rimbombo sonico che proviene da un aereo”, spiega Ginsburg. Per creare un’onda d’urto, la stella deve muoversi con una velocità dell’ordine di migliaia di chilometri al secondo. Ciò è possibile se siamo nelle regioni del centro galattico dato che le stelle sono influenzate dall’enorme forza di gravità dovuta al buco nero supermassiccio (Sagittarius A*). Perciò, quando una stella che si muove lungo la sua orbita raggiunge il punto più vicino al buco nero, essa può acquisire la velocità richiesta. Nel loro articolo, i ricercatori suggeriscono di monitorare una stella nota, denominata con la sigla S2, in modo da studiare questo effetto. L’oggetto, che è caldo e alquanto brillante da essere osservato in banda infrarossa nonostante la presenza della polvere, si avvicinerà al centro galattico tra la fine del 2017 e gli inizi del 2018. A quell’epoca, i radioastronomi potranno seguire la stella allo scopo di rivelare l’emissione radio generata dalla sua onda d’urto. «S2 rappresenterà il nostro banco di prova. Se verrà osservata in banda radio, allora potremo dire che questo metodo potrà essere potenzialmente utilizzato per cercare oggetti più piccoli e più deboli, stelle cioè che non possono essere osservare in alcun altro modo», conclude Avi Loeb del CfA e co-autore dello studio.
di Corrado Ruscica (INAF)

Il rapporto 3 a 2 fa il buco nero intermedio

Esiste una via di mezzo tra i buchi neri di poche masse solari e i supermassicci delle dimensioni anche di miliardi di masse solari già conosciuti dagli astronomi? I ricercatori pensano di si, ma con qualche dubbio che illustrammo qualche anno fa su Media INAF (Il buco nero medio non esiste?). Esistono una mezza dozzina di possibili candidati, ma non si è ancora certi. Un team di astronomi dellaUniversità del Maryland e del Goddard Institute della NASA pensa di aver trovato un nuovo candidato ad esser classificato come buco nero intermedio, grande circa 5000 masse solari. I risultati di questa ricerca sono stati pubblicati su The Astrophysical Journal Letters. Questo risultato, che si avvale di una tecnica di misura già utilizzata dagli stessi ricercatori nel 2014 su dati del satellite NASA Rossi X-ray Timing Explorer (RXTE), «fornisce sostegno all’idea che i buchi neri esistono su tutte le scale dimensionali» secondo l’autore Dheeraj Pasham, post-doc allo Space-Science Institute Joint, un partenariato di ricerca tra il dipartimento di astronomia dell’Università del Maryland e il Goddard Institute. «Quando si descrive qualcosa per la prima volta, c’è sempre qualche dubbio. L’Identificazione di un secondo candidato con un diverso strumento dà fiducia sulla tecnica usata». I dati usati, infatti, in questo caso sono quelli del satellite dell’ESA XMM-Newton. «Per fare un’analogia con strumenti acustici, se immaginiamo  i buchi neri di massa piccola come  il violino e i buchi neri supermassicci come il contrabbasso, i buchi neri di massa  intermedia sono il violoncello», ha sottolineato il co-autore Francesco Tombesi, astrofisico del Goddard associato INAF, recentemente autore di una ricerca che ha conquistato la prima pagina di Nature (vedi Media INAF)NGC1313X-1, il candidato buco nero, è classificato come una sorgente di raggi X ultraluminosa. Non è chiaro perché sia tra le più brillanti sorgenti di raggi X nell’universo vicino, ma secondo alcune ipotesi dipende dal suo attivo procacciarsi di materia che, spiraleggiando verso di esso, si surriscalda per attrito e produce enormi quantità di raggi X. Una particolarità rilevata dagli autori è che questa tipologia di buchi neri emetterebbe due serie di impulsi di energia, ciascuna con una periodicità costante e in rapporto tre a due tra loro. Lo stesso rapporto rilevato con le analisi fatte nel 2014. Questa costanza di rapporto nella frequenza degli impulsi di radiazione sarebbe quindi un elemento caratteristico dei buchi neri di massa intermedia, prodotti dall’attività prossima al buco nero intermedio e “tenuta al guinzaglio” dalla forte gravità del buco nero stesso.
Francesco Rea (INAF)

Fusione di buchi neri

Stando ad un recente studio, frutto di dati raccolti dal radiotelescopio Very Large Array (VLA), nell’Universo potrebbe esserci un numero di coppie di buchi neri supermassicci minore di quanto si pensasse. Le galassie massicce ospitano nel loro nucleo centrale buchi neri con masse pari a milioni di volte il nostro Sole. Quando due galassie di questo tipo si scontrano, i loro buchi neri supermassicci si avvicinano in una stretta danza orbitale che li porta, nel tempo, ad unirsi. Gli scienziati ritengono che questo avvicinamento sia la fonte più intensa di onde gravitazionali che la natura possa fornirci. «Le onde gravitazionali rappresentano la prossima grande frontiera dell’astrofisica, e la loro rilevazione porterà a una nuova comprensione dell’Universo», ha dichiarato David Roberts dellaBrandeis University, autore principale della ricerca. «È importante avere quante più informazioni possibili circa le fonti di questo segnale sfuggente», ha aggiunto. Le onde gravitazionali non sono altro che increspature nello spazio-tempo, e sono state previste nel 1916 da Albert Einstein come conseguenza della sua teoria della relatività generale. La prima prova indiretta dell’esistenza di questo tipo di onde è stata ottenuta studiando il comportamento di una pulsar in orbita attorno ad un’altra stella di neutroni, un sistema scoperto nel 1974 da Joseph Taylor e Russell Hulse. Le osservazioni di questo sistema binario sono durate diversi anni e hanno dimostrato che le loro orbite si stanno riducendo esattamente al tasso previsto dalle equazioni di Einstein, che prevedono una perdita di energia del sistema sotto forma, appunto, di onde gravitazionali. Nel 1993 Taylor e Hulse ha ricevuto il Premio Nobel per la fisica per questo lavoro, che ha confermato un effetto previsto per le onde gravitazionali. Tuttavia, non ne esiste ancora alcun rilevamento diretto. Nel tentativo di rilevare le onde gravitazionali, gli astronomi di tutto il mondo stanno conducendo programmi di monitoraggio delle pulsar in rapida rotazione.  L’estrema precisione dei segnali emessi dalle pulsar ci permette di monitorare ogni loro minima variazione di rotazione. Il monitoraggio delle pulsar prevede la ricerca di spostamenti nei loro segnali luminosi, poiché tali spostamenti sarebbero causati dalle deformazioni del tessuto spazio-temporale riconducibili alle onde gravitazionali. Roberts e suoi colleghi hanno studiato nel dettaglio un campione di galassie note come “radio galassie a forma di X” (in inglese “X-shaped radio galaxies”), la cui peculiare struttura indica la possibilità che i getti radio osservati, che emettono particelle a grandi velocità strappandole dai dischi galattici, abbiano cambiato direzione nel tempo. Gli astronomi hanno suggerito che tale cambiamento potrebbe essere causato dalla fusione con un’altra galassia, che implicherebbe una variazione di direzione dell’asse di rotazione del buco nero e di quello del getto. Il team ha lavorato su un elenco di circa 100 oggetti, ha quindi raccolto i dati di archivio del VLA per ottenere immagini di altissima qualità per una selezione di 52 sorgenti tra le più promettenti. L’analisi delle nuove immagini ha portato alla conclusione che solo 11 sono reali candidati ad essere classificati come frutto di fusioni galattiche. I cambiamenti di direzione dei getti delle altre galassie, hanno concluso, avevano altre cause. Estrapolando da questo risultato, gli astronomi hanno stimato che meno dell’1.3% delle galassie con emissione radio estesa hanno effettivamente sperimentato fusioni. Questo tasso è cinque volte inferiore alle stime precedenti. «Questo potrebbe comportare una riduzione significativa del livello di onde gravitazionali che ci aspettiamo di osservare da queste peculiari radio galassie rispetto a quanto stimato in precedenza», ha detto Roberts. «Sarà molto importante conoscere l’emissione di onde gravitazionali attesa dagli oggetti di cui conosciamo il comportamento elettromagnetico: ci permetterà di migliorare la nostra comprensione della fisica fondamentale».
di Elisa Nichelli (INAF)

Cassini svela l’oceano di Encelado

Un team di ricercatori della Cornell University ha studiato in grande dettaglio l’oceano che si trova sotto la spessa crosta diEncelado, una delle lune ghiacciate di Saturno, misurando con precisione le piccole oscillazioni del satellite, rilevabili solo grazie alle immagini ad alta risoluzione scattate dalla sonda Cassini della NASA. Gli scienziati della Cornell hanno analizzato un archivio di oltre sette anni di immaginiraccolte da Cassini, la sonda spaziale in orbita intorno a Saturno dalla metà del 2004. «Questo tipo di studi è molto complesso e ha richiesto anni di osservazioni e calcoli, coinvolgendo una variegata collezione di discipline, ma siamo fiduciosi di aver raggiunto finalmente delle conclusioni solide», ha dichiarato Peter Thomas, ricercatore alla Cornell e autore principale dell’articolo apparso recentemente sulla rivista Icarus. Encelado è un corpo geologicamente molto attivo e sputa vapore acqueo a grandi velocità dalle fratture nella sua crosta ghiacciata, come ha potuto verificare Cassini sin dalle prime ore di esplorazione del sistema di Saturno. Tuttavia, fino a poco fa gli scienziati erano molto incerti sulla reale portata della fonte d’acqua nel sottosuolo. Con ogni singolo passaggio della sonda Cassini, e relativa raccolta di dati e immagini, Thomas e colleghi hanno faticosamente individuato e misurato le strutture topografiche presenti su Encelado, circa 5.800 in tutto. Grazie a questo studio accurato stata rivelata una leggera oscillazione del satellite (circa un decimo di grado). Nonostante si tratti di un piccolissimo movimento, chiamato librazione, è molto più grande di quanto apparirebbe se la crosta superficiale fosse solidamente legata al nucleo roccioso. Pertanto gli scienziati hanno potuto determinare che lo strato liquido che si trova sotto alla crosta del satellite deve essere molto più profondo di quanto si era potuto stimare in precedenza. «Se la superficie e il nucleo fossero rigidamente legati tra loro, il nucleo lo tratterrebbe a sé così intensamente che l’oscillazione sarebbe di gran lunga inferiore di quanto abbiamo osservato», ha dettoMatthew Tiscareno, che ha lasciato la Cornell in estate per trasferirsi al SETI Institute in California. «Questo dimostra che ci deve essere uno strato di liquido molto profondo a separare la superficie dal nucleo», ha spiegato. «Stiamo solo iniziando a capire quanto Encelado sia incredibilmente interessante», ha dichiarato Joe Burns, professore di Astronomia della Cornell. «Solo grazie ad una grande sonda spaziale come Cassini siamo riusciti ad effettuare misurazioni così dettagliate, e stiamo ottenendo risultati impensabili fino a 20 anni fa». Per Carolyn Porco, a capo del team di analisi delle immagini di Cassini presso lo Space Science Institute di Boulder in Colorado, questo lavoro illustra in maniera eccellente la complessità di questi studi e i diversi ambiti di indagine scientifica che coinvolgono: le misurazioni principali sono state contrassegnate manualmente; la geometria del satellite è stata stimata a partire da una conoscenza precisa della posizione della sonda, dal monitoraggio del segnale radio di Cassini e dalle immagini raccolte dalla sonda. «Questo è un passo enorme, incredibilmente oltre ciò che sapevamo finora di questo satellite, e dimostra il genere di studi approfonditi che siamo in grado di realizzare con missioni di lunga durata di sonde in orbita attorno ad altri pianeti», ha detto Porco. «Da questo punto di vista Cassini è un caso esemplare».
di Elisa Nichelli (INAF)

Voci precedenti più vecchie