Revival della Nebulosa Velo

Questa meravigliosa immagine scattata dal telescopio Hubble (NASA/ESA) ritrae una piccola sezione della Nebulosa Velo, osservata già 18 anni fa – nel 1997. Questa sezione del guscio esterno del famoso resto di supernova si trova in una regione conosciuta come NGC 6960 o – più colloquialmente – Nebulosa Scopa della strega. Dopo 18 anni, quindi, gli esperti sono tornati a fotografare la stessa regione con la Wide Field Camera 3 (WFC3) osservando la sezione con maggiori dettagli rispetto agli anni Novanta e rivelando la sua espansione negli ultimi anni.

Crediti: NASA, ESA, Hubble Heritage Team

Il nome “velo” deriva dalla sua struttura filamentosa particolarmente delicata (almeno in apparenza). La Nebulosa Velo è un antico resto di supernova e la stella che ha originato il tutto è esplosa 8000 anni fa: la stella in questione aveva 20 volte la massa del Sole e si trovava a 2100 anni luce dalla Terra nella costellazione del Cigno. Questa nuvola colorata si espande per circa 110 anni luce. L’immagine del 1997 è stata scattata con la Wide Field and Planetary Camera 2 (WFPC2). Dopo 18 anni, sovrapponendo lo scatto di WFPC2 con quello di WFC3, gli esperti hanno avuto la conferma della sua espansione. Nonostante la complessità della nebulosa e la sua distanza da noi, il movimento di alcune delle sue strutture è chiaramente visibile – in particolare i deboli filamenti di idrogeno che nell’immagine sono di colore rosso. Gli astronomi sospettano che prima dell’esplosione, la stella abbia generato un forte vento stellare, che soffiando ha creato una grande cavità nel gas interstellare circostante. E’ stata l’onda d’urto dalla supernova, espandendosi verso l’esterno, che ha formato le strutture distintive della nebulosa. I filamenti luminosi che possiamo ammirare in queste immagini sono il frutto dell’interazione dell’onda d’urto con questa intercapedine relativamente densa. I meravigliosi colori sono stati generati dalle variazioni di temperatura e densità degli elementi chimici presenti nella nebulosa. I filamenti blu delineano questa cavità creata dal vento stellare. Noscoste tra queste strutture luminose, ci sono i filamenti rossi sottili e “taglienti”, vale a dire emissioni di idrogeno più deboli, create attraverso un meccanismo completamente diverso da quello che genera i filamenti rossi più morbidi, e forniscono agli scienziati un’istantanea della portata dell’urto.
di Eleonora Ferroni (INAF)

Il risveglio di Sagittarius A*

Dopo 15 anni di osservazioni, tre telescopi spaziali hanno rivelato un incremento dell’emissione di raggi X sotto forma dibrillamenti dal quieto, come è di solito, buco nero supermassiccio che risiede nel nucleo della Via Lattea. Gli scienziati stanno tentando di capire se si tratta di un comportamento “ordinario”, che non è stato rivelato prima a causa della mancanza di dati, o se, invece, questi brillamenti sono dovuti al recente passaggio ravvicinato di un misterioso oggetto composto di gas e polvere. I risultati di questo studio sono riportati su Monthly Notices of the Royal Astronomical Society. Dopo un lungo periodo di osservazioni, gli astronomi hanno potuto monitorare l’attività di Sagittarius A* (Sgr A*), grazie a tutta una serie di dati che sono stati raccolti dall’osservatorio spaziale Chandra, dal satellite XMM-Newton e dal satellite Swift. Sgr A* “pesa” poco più di 4 milioni di masse solari e i raggi X sono prodotti dal gas caldo che precipita verso il buco nero. Gli autori hanno analizzato i dati di 150 osservazioni che sono state eseguite, in particolare, da Chandra e XMM-Newton dal Settembre 1999 al Novembre 2014. I risultati suggeriscono un incremento della frequenza e luminosità dei brillamenti avvenuto subito dopo la metà del 2014, cioè alcuni mesi dopo il passaggio ravvicinato di un oggetto, molto probabilmente una nube di gas e polvere, denominato G2Le osservazioni indicano che Sgr A* sta producendo un brillamento X ogni 10 giorni. Ad ogni modo, nel corso dell’ultimo anno, c’è stato un incremento di 10 volte nel tasso di produzione dei brillamenti, circa uno al giorno. «Abbiamo monitorato per diversi anni l’emissione X di Sagittarius A*, tra cui il passaggio ravvicinato di G2», spiega Gabriele Ponti del Max Planck Institute for Extraterrestrial Physics in Germania e autore principale dello studio. «Circa un anno fa, pensavamo che questo oggetto non avesse alcun effetto su Sgr A* ma i nostri dati più recenti suggeriscono la possibilità che non sia così». Inizialmente, gli astronomi hanno ritenuto che G2 fosse una nube estesa di gas e polvere, così come è stato affermato più recentemente in un altro studio di alcuni ricercatori del Max Planck (vedasi l’articolo Si riapre il ‘caso G2’). Dopo il passaggio ravvicinato con Sgr A*, verso la fine del 2013, la sua apparenza non è cambiata molto, tranne per il fatto che l’oggetto è stato “allungato” dalla gravità esercitata dal buco nero. Da qui sono emerse delle teorie secondo cui G2 non è semplicemente una nube di gas, piuttosto si tratta di una stella avvolta in una sorta dibozzolo polveroso” esteso (vedasi l’articolo Risolto il mistero di G2 in cui uno studio americano sostiene invece che si tratti di una stella). «Non c’è un accordo comune su che cosa sia in definitva G2», diceMark Morris della University of California a Los Angeles e co-autore dello studio. «Tuttavia, il fatto che Sgr A* è diventato più attivo subito dopo il passaggio di G2 suggerisce che la materia che si è separata da questo oggetto può aver causato un aumento del tasso di rifornimento di altro materiale a favore del buco nero». Mentre il passaggio di G2 e l’aumento di raggi X da parte di Sgr A* è alquanto intrigante, gli astronomi osservano altri buchi neri che sembrano comportarsi in maniera simile al buco nero della Via Lattea. Dunque, è possibile che questo incremento di attività da parte di Sgr A* possa essere una caratteristica generale dei buchi neri e perciò non necessariamente correlata con il passaggio di G2. Ad esempio, l’aumento dell’attività X potrebbe essere dovuta ad una variazione dell’intensità dei venti stellari provenienti dalle vicine stelle massive che stanno alimentando il buco nero. «È ancora troppo presto per esserne sicuri, ma durante i prossimi mesi terremo un occhio attento all’emissione X da parte di Sgr A*», dice Barbara De Marco del Max Planck Institute e co-autrice dello studio. «Speriamo che ulteriori osservazioni ci diranno alla fine se G2 sarà davvero il responsabile dell’attività di Sgr A* o se, invece, essa sia parte di un comportamento tipico del buco nero». Insomma, se la spiegazione di G2 è corretta, l’incremento della luminosità dei brillamenti X potrebbe essere il primo segnale legato all’eccesso di materia che si è staccato dalla nube a causa del suo passaggio ravvicinato e ora sta cadendo verso il buco nero essendo catturato dalla sua enorme forza gravitazionale. A questo punto, esso potrebbe aver già iniziato ad interagire con il materiale caldo che a sua volta sta precipitando verso Sgr A*, alimentandolo sempre più di gas che alla fine sarà consumato dal buco nero.
di Corrado Ruscica (INAF)

Stelle supersoniche nascoste nel centro galattico

E’ noto che il nucleo della Via Lattea sia un luogo misterioso. Non solo dista migliaia di anni luce da noi ma si trova immerso in una fitta coltre di polvere che la maggior parte delle stelle ivi presenti risultano invisibili. Oggi, però, un gruppo di ricercatori di Harvard ha proposto una nuova tecnica per osservare le stelle che sono immerse in questa sorta di “nebbia di polvere”: in altre parole, essi suggeriscono di cercare le onde radio che provengono dalle cosiddette “stelle supersoniche”. I risultati di questo studio sono riportati su Monthly Notices of the Royal Astronomical Society. «Conosciamo ancora poco il centro galattico e c’è tanto da imparare», afferma Idan Ginsburg del Harvard-Smithsonian Center for Astrophysics (CfA) e autore principale dello studio. «Grazie a questa tecnica, crediamo di poter trovare un certo numero di stelle che nessuno hai mai visto prima». Il lungo tragitto che parte dal centro della Via Lattea fino alla Terra è così pieno di polvere che per ogni trilione di fotoni di luce visibile, che si propagano lungo la nostra linea di vista, appena un fotone raggiunge i nostri telescopi. Le onde radio, però, che si originano da una differente parte dello spettro elettromagnetico, hanno energie più basse e lunghezze d’onda più lunghe. Queste proprietà fanno sì che esse sono in grado di attraversare gli enormi strati di polvere senza essere disturbate. Tuttavia, le stelle non sono così brillanti in banda radio da essere rivelate a queste distanze. Ma se una stella si muove attraverso il gas con una velocità superiore a quella del suono, la situazione cambia. Il materiale che vola via dalla stella sotto forma di vento stellare può perturbare il gas interstellare creando un’onda d’urto. Ora, grazie a un processo fisico chiamato radiazione di sincrotrone, gli elettroni accelerati da quell’onda d’urto producono una determinata radiazione che gli astronomi possono potenzialmente rivelarla nella banda radio. “In un certo senso, stiamo cercando l’equivalente cosmico di un rimbombo sonico che proviene da un aereo”, spiega Ginsburg. Per creare un’onda d’urto, la stella deve muoversi con una velocità dell’ordine di migliaia di chilometri al secondo. Ciò è possibile se siamo nelle regioni del centro galattico dato che le stelle sono influenzate dall’enorme forza di gravità dovuta al buco nero supermassiccio (Sagittarius A*). Perciò, quando una stella che si muove lungo la sua orbita raggiunge il punto più vicino al buco nero, essa può acquisire la velocità richiesta. Nel loro articolo, i ricercatori suggeriscono di monitorare una stella nota, denominata con la sigla S2, in modo da studiare questo effetto. L’oggetto, che è caldo e alquanto brillante da essere osservato in banda infrarossa nonostante la presenza della polvere, si avvicinerà al centro galattico tra la fine del 2017 e gli inizi del 2018. A quell’epoca, i radioastronomi potranno seguire la stella allo scopo di rivelare l’emissione radio generata dalla sua onda d’urto. «S2 rappresenterà il nostro banco di prova. Se verrà osservata in banda radio, allora potremo dire che questo metodo potrà essere potenzialmente utilizzato per cercare oggetti più piccoli e più deboli, stelle cioè che non possono essere osservare in alcun altro modo», conclude Avi Loeb del CfA e co-autore dello studio.
di Corrado Ruscica (INAF)

Fusione di buchi neri

Stando ad un recente studio, frutto di dati raccolti dal radiotelescopio Very Large Array (VLA), nell’Universo potrebbe esserci un numero di coppie di buchi neri supermassicci minore di quanto si pensasse. Le galassie massicce ospitano nel loro nucleo centrale buchi neri con masse pari a milioni di volte il nostro Sole. Quando due galassie di questo tipo si scontrano, i loro buchi neri supermassicci si avvicinano in una stretta danza orbitale che li porta, nel tempo, ad unirsi. Gli scienziati ritengono che questo avvicinamento sia la fonte più intensa di onde gravitazionali che la natura possa fornirci. «Le onde gravitazionali rappresentano la prossima grande frontiera dell’astrofisica, e la loro rilevazione porterà a una nuova comprensione dell’Universo», ha dichiarato David Roberts dellaBrandeis University, autore principale della ricerca. «È importante avere quante più informazioni possibili circa le fonti di questo segnale sfuggente», ha aggiunto. Le onde gravitazionali non sono altro che increspature nello spazio-tempo, e sono state previste nel 1916 da Albert Einstein come conseguenza della sua teoria della relatività generale. La prima prova indiretta dell’esistenza di questo tipo di onde è stata ottenuta studiando il comportamento di una pulsar in orbita attorno ad un’altra stella di neutroni, un sistema scoperto nel 1974 da Joseph Taylor e Russell Hulse. Le osservazioni di questo sistema binario sono durate diversi anni e hanno dimostrato che le loro orbite si stanno riducendo esattamente al tasso previsto dalle equazioni di Einstein, che prevedono una perdita di energia del sistema sotto forma, appunto, di onde gravitazionali. Nel 1993 Taylor e Hulse ha ricevuto il Premio Nobel per la fisica per questo lavoro, che ha confermato un effetto previsto per le onde gravitazionali. Tuttavia, non ne esiste ancora alcun rilevamento diretto. Nel tentativo di rilevare le onde gravitazionali, gli astronomi di tutto il mondo stanno conducendo programmi di monitoraggio delle pulsar in rapida rotazione.  L’estrema precisione dei segnali emessi dalle pulsar ci permette di monitorare ogni loro minima variazione di rotazione. Il monitoraggio delle pulsar prevede la ricerca di spostamenti nei loro segnali luminosi, poiché tali spostamenti sarebbero causati dalle deformazioni del tessuto spazio-temporale riconducibili alle onde gravitazionali. Roberts e suoi colleghi hanno studiato nel dettaglio un campione di galassie note come “radio galassie a forma di X” (in inglese “X-shaped radio galaxies”), la cui peculiare struttura indica la possibilità che i getti radio osservati, che emettono particelle a grandi velocità strappandole dai dischi galattici, abbiano cambiato direzione nel tempo. Gli astronomi hanno suggerito che tale cambiamento potrebbe essere causato dalla fusione con un’altra galassia, che implicherebbe una variazione di direzione dell’asse di rotazione del buco nero e di quello del getto. Il team ha lavorato su un elenco di circa 100 oggetti, ha quindi raccolto i dati di archivio del VLA per ottenere immagini di altissima qualità per una selezione di 52 sorgenti tra le più promettenti. L’analisi delle nuove immagini ha portato alla conclusione che solo 11 sono reali candidati ad essere classificati come frutto di fusioni galattiche. I cambiamenti di direzione dei getti delle altre galassie, hanno concluso, avevano altre cause. Estrapolando da questo risultato, gli astronomi hanno stimato che meno dell’1.3% delle galassie con emissione radio estesa hanno effettivamente sperimentato fusioni. Questo tasso è cinque volte inferiore alle stime precedenti. «Questo potrebbe comportare una riduzione significativa del livello di onde gravitazionali che ci aspettiamo di osservare da queste peculiari radio galassie rispetto a quanto stimato in precedenza», ha detto Roberts. «Sarà molto importante conoscere l’emissione di onde gravitazionali attesa dagli oggetti di cui conosciamo il comportamento elettromagnetico: ci permetterà di migliorare la nostra comprensione della fisica fondamentale».
di Elisa Nichelli (INAF)

Cassini svela l’oceano di Encelado

Un team di ricercatori della Cornell University ha studiato in grande dettaglio l’oceano che si trova sotto la spessa crosta diEncelado, una delle lune ghiacciate di Saturno, misurando con precisione le piccole oscillazioni del satellite, rilevabili solo grazie alle immagini ad alta risoluzione scattate dalla sonda Cassini della NASA. Gli scienziati della Cornell hanno analizzato un archivio di oltre sette anni di immaginiraccolte da Cassini, la sonda spaziale in orbita intorno a Saturno dalla metà del 2004. «Questo tipo di studi è molto complesso e ha richiesto anni di osservazioni e calcoli, coinvolgendo una variegata collezione di discipline, ma siamo fiduciosi di aver raggiunto finalmente delle conclusioni solide», ha dichiarato Peter Thomas, ricercatore alla Cornell e autore principale dell’articolo apparso recentemente sulla rivista Icarus. Encelado è un corpo geologicamente molto attivo e sputa vapore acqueo a grandi velocità dalle fratture nella sua crosta ghiacciata, come ha potuto verificare Cassini sin dalle prime ore di esplorazione del sistema di Saturno. Tuttavia, fino a poco fa gli scienziati erano molto incerti sulla reale portata della fonte d’acqua nel sottosuolo. Con ogni singolo passaggio della sonda Cassini, e relativa raccolta di dati e immagini, Thomas e colleghi hanno faticosamente individuato e misurato le strutture topografiche presenti su Encelado, circa 5.800 in tutto. Grazie a questo studio accurato stata rivelata una leggera oscillazione del satellite (circa un decimo di grado). Nonostante si tratti di un piccolissimo movimento, chiamato librazione, è molto più grande di quanto apparirebbe se la crosta superficiale fosse solidamente legata al nucleo roccioso. Pertanto gli scienziati hanno potuto determinare che lo strato liquido che si trova sotto alla crosta del satellite deve essere molto più profondo di quanto si era potuto stimare in precedenza. «Se la superficie e il nucleo fossero rigidamente legati tra loro, il nucleo lo tratterrebbe a sé così intensamente che l’oscillazione sarebbe di gran lunga inferiore di quanto abbiamo osservato», ha dettoMatthew Tiscareno, che ha lasciato la Cornell in estate per trasferirsi al SETI Institute in California. «Questo dimostra che ci deve essere uno strato di liquido molto profondo a separare la superficie dal nucleo», ha spiegato. «Stiamo solo iniziando a capire quanto Encelado sia incredibilmente interessante», ha dichiarato Joe Burns, professore di Astronomia della Cornell. «Solo grazie ad una grande sonda spaziale come Cassini siamo riusciti ad effettuare misurazioni così dettagliate, e stiamo ottenendo risultati impensabili fino a 20 anni fa». Per Carolyn Porco, a capo del team di analisi delle immagini di Cassini presso lo Space Science Institute di Boulder in Colorado, questo lavoro illustra in maniera eccellente la complessità di questi studi e i diversi ambiti di indagine scientifica che coinvolgono: le misurazioni principali sono state contrassegnate manualmente; la geometria del satellite è stata stimata a partire da una conoscenza precisa della posizione della sonda, dal monitoraggio del segnale radio di Cassini e dalle immagini raccolte dalla sonda. «Questo è un passo enorme, incredibilmente oltre ciò che sapevamo finora di questo satellite, e dimostra il genere di studi approfonditi che siamo in grado di realizzare con missioni di lunga durata di sonde in orbita attorno ad altri pianeti», ha detto Porco. «Da questo punto di vista Cassini è un caso esemplare».
di Elisa Nichelli (INAF)

La Luna si sta restringendo

È noto che le forze gravitazionali che la Luna e il Sole esercitano sulla Terra sono responsabili della salita e della discesa delle maree sul pianeta. Ma sapevate che la forza gravitazionale terrestre influenza – e molto – il nostro satellite naturale? Ovviamente sì, ma quello che forse non sapete è che gli astronomi che lavorano sui dati della sonda Lunar Reconnaissance Orbiter (LRO) della NASA hanno scoperto che alcune caratteristiche della Luna in superficie sono causate dalla gravità esercitata dalla Terra. I ricercatori hanno visionato le immagini dalla Narrow Angle Camera (NAC) di LRO (lanciata nel 2008) e hanno riportato la scoperta di ulteriori 14 scarpate conosciute come lobate scarps (scarpate a forma di lobo) sulla superficie della Luna, oltre alle 70 già fotografate dall’Apollo Panoramic Camera (a bassa risoluzione). Queste scarpate sono prodotte dall’effetto congiunto del restringimento del nucleo lunare mano mano che si raffredda e degli effetti della gravità terrestre e hanno dimensioni fino a dieci chilometri in lunghezza e solo qualche decina di metri di altezza.  Il team scientifico è arrivato alla conclusione che la Luna si stia restringendo. Questi difetti causati dalla gravità terrestre sono piuttosto piccoli, nella media dei 10 chilometri di lunghezza e delle poche decine di metri di altezza. Dopo 7 anni in orbita, LRO ha studiato e fotografato più dei 3/4 della superficie lunare a una risoluzione senza precedenti, portando alla scoperta di oltre 3000 piccole e grandi strutture, dai crateri alle scarpate. L’analisi degli orientamenti di queste piccole scarpate ha prodotto un risultato sorprendente: si sono probabilmente formate dalla contrazione globale derivante dal raffreddamento del nucleo caldo della Luna stessa. Più il nucleo interno si raffredda e porzioni di sottosuolo si solidificano, più il volume del satellite naturale diminuisce. E non solo: la forza gravitazionale della Terra esercita una forte influenza, che si va ad aggiungere al fattore interno. La contrazione globale provocata dalla forza gravitazionale della Terra non può essere l’unica responsabile, infatti, per la formazione di questi difetti sulla superficie lunare, ha detto Thomas Watters, del National Air and Space Museum di Washington. «C’è uno schema nell’orientamento delle migliaia di scogliere e fratture che suggerisce che qualcosa di diverso sta influenzando la loro formazione, qualcosa agisce su scala globale». Come se questa “forza” stesse massaggiando e riallineando tutte le strutture lunari. Watters è l’autore principale della ricerca pubblicata nel numero di ottobre della rivista Geology. Come detto, quindi, gli esperti parlano di due forze: una che proviene dall’interno (dal nucleo) e l’altra che proviene dalla Terra (la gravità). Le forze mareali, appunto. «La scoperta di tante caratteristiche non rilevate in precedenza è davvero notevole», ha sottolineato Mark Robinson dell’Arizona State University. «All’inizio della missione c’era il sospetto che le forze mareali avessero avuto un ruolo fondamentale nella formazione di queste caratteristiche tettoniche, ma non avevamo abbastanza prove per fare dichiarazioni conclusive. Ora che abbiamo le immagini di NAC con l’illuminazione adeguata di oltre la metà della Luna, gli schemi strutturali stanno cominciando a venire a galla». Queste scarpate sono relativamente giovani se si pensa all’età della Luna stessa. E sono talmente recenti, che gli studiosi credono che il processo di formazione e modellamento sia ancora in corso. Dai modelli realizzati dal team di LROC si evince il picco delle sollecitazioni viene raggiunto quando la Luna è più lontana dalla Terra nella sua orbita (all’apogeo). Se questo processo è ancora attivo, i terremoti lunari superficiali sono più frequenti quando la luna si trova al suo apogeo. «Con LRO siamo stati in grado di studiare nel dettaglio la Luna a livello globale come non è stato ancora possibile con altri corpi del Sistema solare. I dati raccolti da LRO ci permettono di studiare piccoli ma importanti processi che altrimenti resterebbero nascosti», ha spiegato John Keller, LRO Project Scientist.
di Eleonora Ferroni (INAF)

Plutone, un singolare cocktail geologico

«Plutone ci sta mostrando una diversità di morfologia e una complessità di processi forse addirittura superiore a tutto ciò che abbiamo finora visto nel sistema solare», commenta entusiasticamente Alan Stern, il responsabile scientifico di New Horizons del Southwest Research Institute (SwRI), alla vista delle ultime immagini ad alta risoluzione inviate da New Horizons. «Se un artista avesse disegnato in questo modo una raffigurazione di Plutone prima del nostro sorvolo ravvicinato, probabilmente l’avrei definita assolutamente esagerata. Invece è proprio quello che si trova lassù».
New Horizons ha iniziato il download delle immagini riprese durante il flyby del 14 luglio scorso, che richiederà un anno perché vengano scaricate tutte. Le immagini arrivate in questi ultimi giorni hanno più che raddoppiato la quantità di superficie di Plutone vista alla risoluzione di 400 metri per pixel.
I mosaici ottenuti dalla composizione di diverse immagini a questa risoluzione rivelano nuove e differenziate caratteristiche, come possibili dune, colate di ghiaccio d’azoto che – apparentemente – fuoriescono da regioni montuose riversandosi sulla pianura, reti di valli scolpite presumibilmente dal materiale che scorre sulla superficie di Plutone.
Si distinguono anche grandi regioni con montagne aggregate in maniera caotica, che ricordano i cosiddetti terreni perturbati sulla luna ghiacciata di Giove, Europa.
«La superficie di Plutone è tanto complessa quanto quella di Marte», dice Jeff Moore, direttore del gruppo di Geologia, Geofisica e Imaging (GGI) allo Ames Research Center della NASA, a Moffett Field, in California. «Le montagne disposte in modo caotico potrebbero essere enormi blocchi di duro ghiaccio d’acqua, galleggianti su un vasto deposito di azoto congelato, più denso e morbido, all’interno della regione informalmente chiamata Sputnik Planum».
Le nuove immagini mostrano anche la parte di terreno più intensamente craterizzata – e quindi più antica – finora vista su Plutone, subito accanto alle più giovani pianure ghiacciate, per la maggior parte senza crateri. Gli scienziati pensano di intravedere anche quello che potrebbe essere un campo di dune scure, prodotte dal vento.
«Vedere dune su Plutone – se di questo effettivamente si tratta – sarebbe alquanto sorprendente, dal momento che l’attuale atmosfera di Plutone è così sottile», spiega William B. McKinnon, dalla Washington University di St. Louis e vice direttore del GGI. «O Plutone possedeva un’atmosfera più spessa in passato, oppure è in atto qualche processo che non abbiamo ancora capito. E’ un vero rompicapo».
Altre immagini arrivate nei giorni scorsi hanno inoltre rivelato che la foschia atmosferica globale di Plutone ha molti più strati di quanto si fosse potuto distinguere nelle prime immagini compresse inviate a Terra lo stesso giorno del sorvolo, e come invece si può apprezzare nella versione a risoluzione piena dell’istantanea “in controluce” ripresa da New Horizons da 770.000 km di distanza mentre abbandonava il pianeta nano dopo il loro fugace incontro.
Infine, gli scienziati si sono accorti che la foschia atmosferica attorno a Plutone crea un effetto crepuscolare che illumina leggermente anche il terreno sul lato notturno, oltre la linea d’ombra del tramonto, rendendolo visibile alle fotocamere a bordo di New Horizons. «Questo punto di vista crepuscolare aggiuntivo è un dono meraviglioso di cui Plutone ci ha omaggiato», ha detto John Spencer del Southwest Research Institute a Boulder, in Colorado, un altro vicedirettore del GGI. «Ora siamo in grado di studiare la geologia di un terreno che non ci saremmo mai aspettati di vedere».
Le scoperte fatte nel nuovo set di immagini non sono limitate alla superficie di Plutone. Riprese più dettagliate, rispetto a quelle quelle disponibili finora, dei satelliti di Plutone Caronte, Nix e Hydra sono in fase di caricamento sul sito che raccoglie le immagini grezze della fotocamera Long Range Reconnaissance Imager (LORRI). Gli scienziati anticipano che queste immagini evidenziano bene come ogni luna sia unica, e come il passato di Caronte sia stato alquanto travagliato.
Nell’immagine riprodotta qui sopra, che abbraccia tutti i 1.200 km di diametro della luna, Caronte mostra infatti i segni evidenti di una storia geologica sorprendentemente complessa, tra cui: fratturazione tettonica; pianure frammentate relativamente lisce in basso a destra; diverse enigmatiche montagne circondate da formazioni sprofondate nel terreno sul lato destro; regioni piene di crateri al centro e nella parte superiore sinistra del disco. I dettagli più piccoli distinguibili in questa immagine sono di dimensioni attorno ai 4,5 km.
Per quanto riguarda l’eroina di questa vicenda, la sonda New Horizons, si trova ora a più di 5 miliardi di chilometri dalla Terra, e a più di 70 milioni di chilometri oltre Plutone. La navicella è in salute e tutti i sistemi a bordo funzionano correttamente, rassicurano dal centro di controllo. Foto sul sito INAF
di Stefano Parisini (INAF)

Il mistero dei canali che disegnano Marte

Cosa portò alla formazione dei lunghi ed enormi canali di scorrimento che disegnano la superficie di Marte? Finora gli esperti hanno creduto che fossero stati creati da una grande falda acquifera a livello globale che rilasciò enormi quantità di acqua nel lontano (lontanissimo) passato del quarto pianeta del Sistema solare. Non è così, almeno è quello che cercano di provare i ricercatori guidati da Alexis P. Rodriguez del Planetary Science Institute. Il suo team ha rivelato che delle esplosioni sotterranee gigantesche provocarono la formazione dei maggiori canali fluviali su Marte, 3,2 miliardi di anni fa (sono anche i canali più lunghi e profondi dell’interno Sistema solare).
«Il processo di inondazione è regionale, non globale», ha detto Rodriguez, primo autore dello studio “Martian outflow channels: How did their source aquifers form, and why did they drain so quickly?”, pubblicato su Nature Scientific Report. La prova sta in depositi di ghiaccio e sedimenti rocciosi risalenti a 450 milioni di anni prima delle esplosioni: «I sedimenti fluviali e il ghiaccio hanno riempito questi canyon giganti sotto un oceano primordiale nelle pianure settentrionali del pianeta. È stata l’acqua conservata in questi sedimenti nei canyon che ha provocato poi le grandi inondazioni, i cui effetti si possono vedere oggi».
Cosa successe? I canyon si riempirono, l’oceano pian piano evaporò e la superficie rimase ghiacciata per circa 450 milioni di anni. Poi, circa 3,2 miliardi di anni fa, la lava al di sotto dei canyon riscaldò il suolo sciogliendo il materiale ghiacciato e dando così il via al vasto sistema fluviale di cui oggi vediamo solo le tracce nelle centinaia di chilometri di canali. «Il nostro studio dimostra che gli antichi sedimenti su Marte possano aver seppellito enormi quantità di acqua, probabilmente innescando anche la glaciazione del pianeta – ha spiegato ancora Rodriguez – Le prove che questo ambienti antichi nel passato possa essere stato in grado di sostenere forme di vita simili a quelle sulla Terra potrebbero essere presenti nei materiali del sottosuolo che sono ora in superficie».
Lo scienziato ha anche sottolineato che proprio perché il processo di sedimentazione, congelamento, riscaldamento e poi eruzione è da registrarsi su scala regionale, «potrebbero esserci vasti bacini di acqua ghiacciata intrappolati sotto la superficie marziana ai confini con l’antico oceano dell’emisfero settentrionale così come sotto la superficie di altre regioni del pianeta in cui erano presenti contemporaneamente mari e laghi. Questo potrebbe essere fondamentale per il futuro delle attività umane su Marte». E si spera che questo futuro arrivi molto presto!
di Eleonora Ferroni (INAF)

Epsilon Lupi, doppia e magnetica

E’ una coppia davvero unica quella scoperta da Matt Shultz, studente di dottorato della Queen University in Ontario (Canada) e il suo team. I ricercatori hanno individuato la presenza di campi magnetici nelle componenti della stella binaria Epsilon Lupi, il quarto astro più brillante della costellazione del Lupo, nell’emisfero australe. Le stelle, che orbitano uno attorno all’altra, si trovano alla distanza di circa 500 anni luce dalla Terra, hanno ciascuna una massa compresa tra sette e otto volte quella del nostro Sole e, insieme, possiedono una luminosità 6.000 volte maggiore.
La scoperta è stata realizzata grazie alle osservazioni del telescopio Canada-France-Hawaii, che sono state condotte nell’ambito delle attività di ricerca del consorzio BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars), coordinato da Evelyne Alecian dell’Università di Grenoble in Francia, proprio con l’obiettivo di studiare le proprietà magnetiche in sistemi stellari binari stretti.
Shultz commenta: «L’origine del magnetismo nelle stelle massicce è ancora un mistero e questa scoperta potrebbe aiutarci a far luce sul perché solo alcune stelle di grande taglia possiedono campi magnetici» .
Nel stelle con una temperatura superficiale relativamente bassa, come ad esempio il Sole, i campi magnetici sono generati da un effetto “dinamo”. Ad alimentarlo sono i moti convettivi che si sviluppano all’interno della stella, dove il materiale più caldo sale in superficie mentre quello più freddo tende a scendere nelle zone più profonde. Nelle stelle massicce, più calde in superficie e più brillanti, i moti convettivi sono sostanzialmente assenti e di conseguenza anche l’effetto dinamo. Deve quindi esistere qualche altro meccanismo responsabile del campo magnetico presente nelle stelle di Epsilon lupi.
Gli astronomi propendono per due possibili spiegazioni, entrambe legate al concetto di ‘campo magnetico fossile’, che si sarebbe cioè formato nel passato della storia evolutiva della stella per poi mantenersi fino ai giorni nostri. La prima ipotesi prevede che il campo magnetico sia emerso proprio durante le fasi di formazione della stella, la seconda suggerisce che il campo magnetico sia stato prodotto dall’effetto dinamo provocato durante il violento rimescolamento di materiale stellare avvenuto a seguito di una fusione di due stelle già formate.
«La nostra scoperta ci permette di escludere lo scenario di fusione da un sistema binario» aggiunge Shultz. «Tuttavia, non cambia il panorama che emerge finora dai risultati della collaborazione BinaMIcS, che cioè meno del due per cento delle stelle massicce in sistemi binari stretti possiedono campi magnetici. E noi non sappiamo ancora il perché».
L’indagine, pubblicata in un articolo sulla rivista Monthly Notices of the Royal Astronomical Society, indica che le intensità dei campi magnetici nelle due stelle sono simili, ma i loro assi sono anti-allineati, con il polo magnetico sud di una stella che punta nella stessa direzione del polo nord dell’altra, lasciando aperta anche la possibilità che le due stelle condividano un unico campo magnetico globale. I risultati indicano inoltre che le stelle sono sufficientemente vicine perché le loro magnetosfere possano interagire durante il moto orbitale. I loro campi magnetici potrebbero agire quindi come un gigantesco freno che, a lungo andare, le farebbe avvicinare sempre più, e quindi fondersi.
di Marco Galliani (INAF)

Mercurio strattonato da Giove?

Mercurio, il pianeta più interno del Sistema Solare, è in anticipo. Non un granché, solo 9 secondi: un piccolo passo per un globo di quasi 5.000 km di diametro, ma un grande salto per gli scienziati che cercano di determinare con la massima accuratezza il modo peculiare con cui piroetta su sé stesso. Mercurio, infatti, non ruota sul suo asse in maniera costante, ma presenta delle fluttuazioni regolari nella velocità di rotazione durante il periodo di circa 88 giorni in cui compie un’orbita completa attorno al Sole. Queste oscillazioni, dette librazioni, sono causate dalle interazioni gravitazionali del pianeta con la sua stella: l’attrazione gravitazionale del Sole accelera o rallenta la rotazione di Mercurio a seconda di dove questo si trovi all’interno della sua orbita ellittica, la più eccentrica tra gli otto pianeti del nostro sistema. Naturalmente gli scienziati avevano già calcolato le librazioni di Mercurio con misure da Terra, ma ora un nuovo studio, guidato da scienziati dell’Istituto per la ricerca planetaria al centro aerospaziale tedesco DLR, basato su dati raccolti dalla sonda spaziale MESSENGER, ha trovato che, in media, Mercurio ruota sul suo asse nove secondi più velocemente di quanto fosse stato previsto in precedenza. Per dare un’idea di cosa comportino quei 9 secondi di differenza, immaginiamo di piantare una bandierina in un punto all’equatore di Mercurio: dopo quattro anni non la troveremmo nel punto dove la prevedevano i vecchi calcoli ma 700 metri più in là. Secondo gli scienziati, una possibile spiegazione alla differenza nella velocità di rotazione può essere fornita da “strattoni” prodotti dal forte campo gravitazionale di Giove, che possono avere modificato la distanza orbitale di Mercurio dal Sole, e di conseguenza i suoi effetti sulla rotazione del pianeta. Gli autori ritengono che Giove abbia sovrapposto un periodo di circa 12 anni – che corrisponde all’anno gioviano – sopra il periodo di librazione di 88 giorni tipico di Mercurio. Questo librazione a lungo termine potrebbe essere la causa del leggero aumento della velocità osservata, ma per esserne certi bisognerà attendere la prossima missione dell’ESA, l’Agenzia spaziale europea, da lanciare nel 2017 e denominata BepiColombo. Il nuovo studio ha anche riscontrato che quando Mercurio si allontana dal Sole la sua rotazione perde 460 metri, una distanza che viene prontamente riguadagnata con l’accelerazione impressa dal suo riavvicinarsi alla stella. L’accuratezza di queste nuove misure permette agli scienziati di fare diverse considerazioni sulla composizione interna di Mercurio, che può essere dedotta proprio dalle instabilità periodiche del suo movimento orbitale. In particolare si può calcolare la proporzione tra materiale solido e liquido di cui è composto, un po’ come quando si riesce a distinguere se un uovo è sodo oppure no dal modo in cui ruota sul tavolo. «Le nostre misure, che coincidono con quelle effettuate dalla Terra, mostrano che la librazione di Mercurio è circa il doppio di quanto ci si aspetterebbe se il pianeta fosse interamente solido», spiega uno degli autori, Jean-Luc Margot dell’Università della California. «Questo conferma che Mercurio possiede un grande nucleo parzialmente liquefatto, il quale rappresenta più della metà del volume e approssimativamente il 70 per cento della massa del pianeta», aggiunge Jürgen Oberst del DLR Institute of Planetary Research. «Con la misura della velocità rotazionale e le risultanti conclusioni sulla composizione interna di Mercurio, abbiamo portato a termine uno dei principali obbiettivi della missione MESSENGER», commenta Alexander Stark del DLR Institute of Planetary Research, primo firmatario del nuovo studio, che sottolinea in conclusione come precisi modelli di rotazione del pianeta siano la base per generare mappe accurate, le quali, a loro volta, sono importanti per pianificare le future missioni su Mercurio, come BepiColombo.
di Stefano Parisini (INAF)

Voci precedenti più vecchie