La panspermia, le comete, la vita e il ghiaccio

Una cometa è un corpo celeste relativamente piccolo, simile ad un asteroide ma composto prevalentemente di ghiaccio. Nel Sistema solare, le orbite delle comete si estendono oltre quella di Plutone. Le comete che entrano nel sistema interno, e si rendono quindi visibili dalla Terra, hanno spesso orbite ellittiche. Spesso descritte come “palle di neve sporche”, le comete sono composte per la maggior parte di sostanze volatili come biossido di carbonio, metano e acqua ghiacciati, con mescolati aggregati di polvere e vari minerali. La sublimazione delle sostanze volatili quando la cometa è in prossimità del Sole causa la formazione della chioma e della coda. Si pensa che le comete siano dei residui rimasti dalla condensazione della nebulosa da cui si formò il Sistema Solare: le zone periferiche di tale nebulosa sarebbero state abbastanza fredde da permettere all’acqua di trovarsi in forma solida (invece che come gas).

Il nucleo

I nuclei cometari possono variare in dimensione dalle centinaia di metri fino a cinquanta e più chilometri e sono composti da roccia, polvere e ghiacci d’acqua e di altre sostanze, comunemente presenti sulla Terra allo stato gassoso, quali monossido di carbonio, anidride carbonica, metano ed ammoniaca.Sono popolarmente descritti come “palle di neve sporca”, sebbene osservazioni recenti hanno rivelato forme irregolari e superfici secche di polveri o rocce, suggerendo che i ghiacci siano nascosti sotto la crosta. Le comete sono composte inoltre da una varietà di composti organici: oltre ai gas già menzionati, sono presenti metanolo, acido cianidrico, formaldeide, etanolo ed etano ed anche, forse, molecole più complesse come lunghe catene di idrocarburi e amminoacidi. Contrariamente a quanto si possa pensare, i nuclei cometari sono tra gli oggetti del Sistema solare più scuri conosciuti: alcuni sono più neri del carbone  La sonda Giotto scoprì che il nucleo della Cometa di Halley riflette circa il 4% della luce con cui viene illuminato, e la sonda Deep Space 1 scoprì che la superficie della cometa Borrelly riflette una percentuale tra il 2,4% e il 3%. Per confronto,il normale asfalto stradale riflette il 7% della luce incidente. Nel Sistema solare esterno le comete rimangono in uno stato congelato ed è estremamente difficile o impossibile rilevarle dalla Terra a cause delle loro ridotte dimensioni. Sono state riportate rilevazioni statistiche da parte del Telescopio spaziale Hubble di nuclei cometari non attivi nella fascia di Kuiper, sebbene le identificazioni siano state messe in discussione,e non abbiano ancora ricevuto delle conferme indipendenti.

Chioma e Coda

Quando una cometa si avvicina al Sistema solare interno, il calore del Sole fa sublimare i suoi strati di ghiaccio più esterni. Le correnti di polvere e gas prodotte formano una grande, ma rarefatta atmosfera attorno al nucleo, chiamata chioma, mentre la forza esercitata sulla chioma dalla pressione di radiazione del Sole, e soprattutto dal vento solare, conducono alla formazione di un’enorme coda che punta in direzione opposta al Sole. Chioma e coda risplendono sia per riflessione diretta della luce incidente, sia in conseguenza della ionizzazione dei gas per effetto del vento solare. Sebbene la maggior parte delle comete sia troppo debole per essere osservata senza l’ausilio di un binocolo o di un telescopio, una manciata ogni decade diventa ben visibile ad occhio nudo. Occasionalmente una cometa può sperimentare una enorme ed improvvisa esplosione di gas e polveri, indicata comunemente con il termine inglese outburst. Nella fase espansiva seguente la chioma può raggiungere dimensioni ragguardevoli. Nel novembre del 2007 per la chioma della Cometa Holmes è stato stimato un diametro di 1,4 milioni di chilometri, pari a quello del Sole. Per un brevissimo periodo, la cometa ha posseduto l’atmosfera più estesa del Sistema solare. Spesso polveri e gas formano due code distinte, che puntano in direzioni leggermente differenti: la polvere, più pesante, rimane indietro rispetto al nucleo e forma spesso una coda incurvata, che si mantiene sull’orbita della cometa; il gas, più sensibile al vento solare, forma una coda diritta, in direzione opposta al Sole, seguendo le linee del campo magnetico locale piuttosto che traiettorie orbitali. Viste prospettiche dalla Terra possono determinare configurazioni in cui le due code si sviluppano in direzioni opposte rispetto al nucleo; oppure in cui la coda di polveri, più estesa, appare ad entrambi i lati di esso. In questo casi si dice che la cometa possiede una coda ed un’anti-coda. Un esempio recente ne è stata la Cometa Lulin. Mentre il nucleo è generalmente inferiore ai 50 km di diametro, la chioma può superare le dimensioni del Sole e sono state osservate code ioniche di estensione superiore ad 1 UA (150 milioni di chilometri).  È stato proprio grazie all’osservazione della coda di una cometa, disposta in direzione opposta al Sole, che Ludwig Biermann ha contribuito significativamente alla scoperta del vento solare.  Sono comunque estremamente tenui, tanto che è possibile vedere le stelle attraverso di esse. La coda ionica si forma per effetto fotoelettrico, come risultato dell’azione della radiazione solare ultravioletta incidente sulla chioma. La radiazione incidente è sufficientemente energetica da superare l’energia di ionizzazione richiesta dalle particelle degli strati superiori della chioma, che vengono trasformate così in ioni. Il processo conduce alla formazione di un nuvola di particelle cariche positivamente intorno alla cometa che determina la formazione di una “magnetosfera indotta”, che costituisce un ostacolo per il moto del vento solare. Poiché inoltre la velocità relativa tra il vento solare e la cometa è supersonica, a monte della cometa e nella direzione di flusso del vento solare si forma un bow shock, nel quale si raggruppa un’elevata concentrazione degli ioni cometari (chiamati “pick up ions”). Il vento solare ne risulta arricchito di plasma in modo che le linee di campo “drappeggiano” attorno alla cometa formando la coda ionica.  Se l’intensità del vento solare aumenta ad un livello sufficiente, le linee del campo magnetico ad esso associato si stringono attorno alla cometa e ad una certa distanza lungo la coda, oltrepassata la chioma, si verifica la riconnessione magnetica. Ciò conduce an “evento di disconnessione della coda”: la coda perde la propria continuità (si “spezza”) e la porzione oltre la disconnessione si disperde nello spazio. Sono state osservate diverse occorrenze di tali eventi. Degna di nota è la disconnessione della coda della Cometa Encke avvenuta il 20 aprile del 2007, quando la cometa è stata investita da un’espulsione di massa coronale. L’osservatorio orbitante solare STEREO-A registrò alcune immagini dell’evento, che, montate a costituire una sequenza, sono visibili qui a lato.  L’osservazione della Cometa Hyakutake nel 1996 ha condotto alla scoperta che le comete emettono raggi X.  La scoperta destò sorpresa tra gli astronomi, che non avevano previsto che le comete potessero emetterne. Si ritiene che i raggi X siano prodotti dall’interazione tra le comete ed il vento solare: quando ioni con carica elevata attraversano un’atmosfera cometaria, collidono con gli atomi e le molecole che la compongono. Nella collisione, gli ioni catturano uno o più elettroni emettendo nello stesso tempo raggi X e fotoni nel lontano ultravioletto.

Caratteristiche orbitali

La maggior parte delle comete seguono orbite ellittiche molto allungate che le portano ad avvicinarsi al Sole per brevi periodi e a permanere nelle zone più lontane del Sistema solare per la restante parte. Le comete sono usualmente classificate in base alla lunghezza del loro periodo orbitale.

  • Sono definite comete di corto periodo quelle che hanno un periodo orbitale inferiore a 200 anni. La maggior parte di esse percorre orbite che giacciono in prossimità del piano dell’eclittica, con lo stesso verso di percorrenza dei pianeti. Tali orbite sono generalmente caratterizzate da un afelio posto nella regione dei pianeti esterni (dall’orbita di Giove in poi). Per esempio, l’afelio dell’orbita della Cometa di Halley si trova poco oltre l’orbita di Nettuno. All’estremo opposto, la Cometa Encke percorre un’orbita che non la porta mai ad oltrepassare quella di Giove. Le comete periodiche sono a loro volta suddivise nella famiglia cometaria di Giove (comete con periodo inferiore ai 20 anni) e nella famiglia cometaria di Halley (comete con periodo compreso tra i 20 ed i 200 anni).
  • Le comete di lungo periodo percorrono orbite con elevate eccentricità e con periodi compresi tra 200 e migliaia o anche milioni di anni. (Comunque, per definizione, rimangono gravitazionalmente legate al Sole; non è possibile parlare propriamente di periodo, infatti, in riferimento a quelle comete che sono espulse dal Sistema solare in seguito all’incontro ravvicinato con un pianeta). Le loro orbite sono caratterizzate da afelii posti molto oltre la regione dei pianeti esterni ed i piani orbitali presentano una grande varietà di inclinazioni rispetto al piano dell’eclittica.
  • Le comete extrasolari (in inglese Single-apparition comets o comete da una singola apparizione) percorrono orbite paraboliche o iperboliche che le portano a uscire permanentemente dal Sistema solare dopo esser passate una volta in prossimità del Sole.
  • Alcune fonti utilizzano la locuzione cometa periodica per riferirsi a ogni cometa che percorra un’orbita chiusa (cioè, tutte le comete di corto periodo e quelle di lungo periodo), mentre altre la utilizzano esclusivamente per le comete di corto periodo.  Similmente, sebbene il significato letterale di cometa non periodica sia lo stesso di cometa da una singola apparizione, alcuni lo utilizzano per riferirsi a tutte le comete che non sono “periodiche” nella seconda accezione del termine (cioè, includendo tutte le comete con un periodo superiore a 200 anni).
  • Comete recentemente scoperte nella fascia principale degli asteroidi (cioè corpi appartenenti alla fascia principale che manifestano attività cometaria durante una parte della loro orbita) percorrono orbite semi-circolari e sono state classificate a loro stanti.
  • Esistono infine le comete radenti (in inglese sun-grazing, ovvero che sfiorano il Sole), dal perielio così vicino al Sole che ne sfiorano letteralmente la superficie. Esse hanno breve vita, perché l’intensa radiazione solare le fa evaporare in pochissimo tempo. Sono, inoltre, difficili da osservare, a causa dell’intensa luce solare molto vicina: per osservarle occorre usare strumenti speciali come un coronografo, usare un filtro a banda molto stretta, osservarle durante un eclissi totale di Sole, o tramite un satellite.

Da considerazioni sulle caratteristiche orbitali, si ritiene che le comete di corto periodo (decine o centinaia di anni) provengano dalla fascia di Kuiper o dal disco diffuso – un disco di oggetti nella regione transnettuniana – mentre si ritiene che il serbatoio delle comete a lungo periodo sia la ben più distante nube di Oort (una distribuzione sferica di oggetti che costituisce il confine del Sistema solare, la cui esistenza è stata ipotizzata dall’astronomo olandese Jan Oort). È stato ipotizzato che in tali regioni distanti, un gran numero di comete orbiti intorno al Sole su orbite quasi circolari. Occasionalmente l’influenza gravitazionale dei pianeti esterni (nel caso degli oggetti presenti nella fascia di Kuiper) o delle stelle vicine (nel caso di quelli presenti nella nube di Oort) sposta uno di questi oggetti su un’orbita altamente ellittica che lo porta a tuffarsi verso le regioni interne del Sistema solare, dove appare come una vistosa cometa. Altre teorie ipotizzate nel passato prevedevano l’esistenza di una compagna sconosciuta del Sole chiamata Nemesi, o un ipotetico Pianeta X. A differenza del ritorno delle comete periodiche le cui orbite sono state determinate durante i transiti precedenti, non è predicibile la comparsa di una nuova cometa tramite questo meccanismo. Poiché le orbite percorse portano le comete in prossimità dei giganti gassosi, esse sono soggette ad ulteriori perturbazioni gravitazionali. Le comete di corto periodo mostrano la tendenza di regolarizzare il proprio afelio e portarlo a coincidere con il raggio orbitale di uno dei pianeti giganti; un chiaro esempio di questo fenomeno è l’esistenza della famiglia cometaria di Giove. È chiaro inoltre che anche le orbite delle comete provenienti dalla nube di Oort possono essere fortemente alterate dall’incontro con un gigante gassoso. Giove è la principale fonte di perturbazioni, possedendo una massa quasi doppia rispetto a tutti gli altri pianeti messi assieme, oltre al fatto che è anche il pianeta gigante che completa la propria orbita più rapidamente. Queste perturbazioni possono trasferire a volte comete di lungo periodo su orbite con periodi orbitali più brevi (la Cometa di Halley ne è un esempio). È interessante osservare che l’orbita che viene determinata per una cometa è un’orbita osculatrice, che non tiene conto delle perturbazioni gravitazionali e non a cui può essere soggetta la cometa. Un esempio ne è il fatto che le orbite delle comete di corto periodo rivelano piccole variazioni dei parametri orbitali ad ogni transito. Ancora più significativo è quanto accade per le comete di lungo periodo. Per molte di esse viene calcolata un’orbita parabolica o iperbolica considerando la massa del Sole concentrata nel suo centro; se però l’orbita viene calcolata quando la cometa è oltre l’orbita di Nettuno ed assegnando all’attrattore principale la massa presente nelle regioni più interne del Sistema solare concentrata nel centro di massa del Sistema solare (prevalentemente del sistema composto dal Sole e da Giove), allora la stessa orbita risulta ellittica.  La maggior parte della comete paraboliche ed iperboliche appartengono quindi al Sistema solare. Una cometa proveniente dallo spazio interstellare dovrebbe invece essere identificabile da un valore dell’energia orbitale specifica nettamente positivo, corrispondente ad una velocità di attraversamento del Sistema solare interno di poche decine di km/s. Una stima approssimativa del numero di tali comete potrebbe essere di quattro per secolo. Alcune comete periodiche scoperte nel secolo scorso sono “perdute”. Per alcune di esse, le osservazioni non permisero di determinare un’orbita con la precisione necessaria a predirne il ritorno. Di altre, invece, è stata osservata la frantumazione del nucleo. Quello che può essere stato il loro destino sarà descritto in una sezione successiva. Tuttavia, occasionalmente una “nuova” cometa scoperta presenta parametri orbitali compatibili con una cometa perduta. Esempi ne sono le comete11P/Tempel-Swift-LINEAR, scoperta nel 1869, perduta dopo il 1908 in seguito ad un incontro ravvicinato con Giove e riscoperta nel 2001 nell’ambito del programma automatizzato per la ricerca di asteroidi LINEAR del Lincoln Laboratory, e la 206P/Barnard-Boattini, scoperta nel 1892 grazie all’utilizzo della fotografia, perduta per più di un secolo e riscoperta nel 2008 dall’astronomo italiano Andrea Boattini.

Morte delle comete

Le comete hanno vita relativamente breve. I ripetuti passaggi vicino al Sole le spogliano progressivamente degli elementi volatili, fino a che la coda non si può più formare, e rimane solo il materiale roccioso. Se questo non è abbastanza legato, la cometa può semplicemente svanire in una nuvola di polveri. Se invece il nucleo roccioso è consistente, la cometa è adesso diventata un asteroide inerte, che non subirà più cambiamenti. La frammentazione delle comete può essere attribuita essenzialmente a tre effetti: all’urto con un meteorite, ad effetti mareali di un corpo maggiore, quale conseguenza dello shock termico derivante da un repentino riscaldamento del nucleo cometario. Spesso episodi di frantumazione seguono fasi di intensa attività della cometa, indicate col termine inglese outburst. La frammentazione può comportare un aumento della superficie esposta al Sole e può risolversi in un rapido processo di disgregazione della cometa. L’osservazione della frammentazione del nucleo della cometa periodica Schwassmann-Wachmann 3 ha permesso di raccogliere nuovi dati su questo fenomeno. Alcune comete possono subire una fine più violenta: cadere nel Sole oppure entrare in collisione con un pianeta, durante le loro innumerevoli orbite che percorrono il Sistema solare in lungo e in largo. Le collisioni tra pianeti e comete sono piuttosto frequenti su scala astronomica: la Terra incontrò una piccola cometa nel 1908, che esplose nella taiga siberiana causando l’evento di Tunguska, che rase al suolo migliaia di chilometri quadrati di foresta. Nel 1910 la Terra passò attraverso la coda della Cometa di Halley, ma le code sono talmente immateriali che il nostro pianeta non subì il minimo effetto. Tra la seconda metà degli anni sessanta ed i primi anni settanta lacometa Shoemaker-Levy 9 passò troppo vicino a Giove e rimase catturata dalla gravità del pianeta. Le forze di marea causate dalla gravità spezzarono il nucleo in una decina di pezzi, i quali poi bombardarono il pianeta nel 1994 offrendo viste spettacolari ai telescopi di mezzo mondo, da tempo in allerta per seguire l’evento. Divenne immediatamente chiaro il significato di strane formazioni che si trovano sulla Luna e su altri corpi rocciosi del Sistema solare: catene di piccoli crateri, posti in linea retta uno dopo l’altro. È evidente che una cometa passò troppo vicino al nostro pianeta, ne rimase spezzata, e andò a finire contro la Luna causando la catena di crateri. La collisione di una grossa cometa con la Terra sarebbe un disastro immane se avvenisse vicino ad una grande città, perché causerebbe sicuramente migliaia, se non milioni di morti. Fortunatamente, seppur frequenti su scala astronomica, tali eventi sono molto rari su scala umana, e i luoghi densamente abitati della Terra sono ancora molto pochi rispetto alle vaste aree disabitate o coperte dai mari.

Origine degli sciami meteorici

Il nucleo di ogni cometa perde continuamente materia, che va a formare la coda. La parte più pesante di questo materiale non è spinta via dal vento solare, ma resta su un’orbita simile a quella originaria. Col tempo, l’orbita descritta dalla cometa si riempie di sciami di particelle piccolissime, ma molto numerose, e raggruppate in nubi che hanno origine in corrispondenza di un periodo di attività del nucleo. Quando la Terra incrocia l’orbita di una cometa in corrispondenza di una nube, il risultato è uno sciame di stelle cadenti, come le famose “lacrime di San Lorenzo” (10 agosto), o numerosi sciami più piccoli e meno conosciuti. A volte le nubi sono densissime: la Terra incrocia, ogni 33 anni, la parte più densa della nube delle Leonidi, derivanti dalla cometa 55P/Tempel-Tuttle. Nel 1833 e nel 1966 le Leonidi diedero luogo a “piogge”, con conteggi superiori alle dieci meteore al secondo, gli sciami del 1899 e del 1933 non sono stati altrettanto prolifici.

Denominazione

Negli ultimi due secoli, sono state adottate diverse convenzioni tra loro differenti per la nomenclatura delle comete. Prima che fosse adottata la prima di esse, le comete venivano identificate con una grande varietà di nominativi. Precedentemente ai primi anni del XX secolo, ci si riferiva alla maggior parte delle comete con l’anno in cui erano apparse, a volte con aggettivi addizionali per le comete particolarmente brillanti; ad esempio, la “Grande Cometa del 1680” (o Cometa di Kirch), la “Grande Cometa del settembre del 1882”, e la “Cometa Daylight del 1910” (“Grande Cometa Diurna del 1910”) – ad indicare che la cometa era stata visibile anche di giorno. Dopo che Edmund Halley ebbe dimostrato che le comete del 1531, 1607 e1682 erano lo stesso oggetto celeste e ne predisse correttamente il ritorno nel 1759, quella cometa divenne nota come la Cometa di Halley. Similmente, la seconda e la terza cometa periodica conosciuta, la Cometa Encke e la Cometa Biela, furono nominate dal cognome degli astronomi che ne calcolarono l’orbita, piuttosto che da quello dei loro scopritori. Successivamente, le comete periodiche saranno nominate abitualmente dal nome degli scopritori, ma si continuerà a riferirsi soltanto con l’anno alle comete che appaiono solo una volta. In particolare, divenne usanza comune nominare le comete dagli scopritori nei primi anni del XX secolo e questa convenzione è adottata anche oggi. Una cometa può essere nominata dal nome di non più di tre scopritori. In anni recenti, molte comete sono state scoperte da strumenti manovrati da un consistente numero di astronomi ed in questi casi le comete possono essere nominate dalla denominazione dello strumento. Per esempio, la Cometa IRAS-Araki-Alcock fu scopertaindipendentemente dal satellite IRAS e dagli astronomi amatoriali Genichi Araki e George Alcock. Nel passato, quando più comete venivano scoperte dallo stesso individuo, o gruppo di individui o squadra di ricerca, le comete venivano distinte aggiungendo un numero al nome dello scopritore (ma solo per le comete periodiche), ad esempio le Comete Shoemaker-Levy 1-9. Oggi che la maggior parte delle comete viene scoperta da alcuni strumenti (nel dicembre del 2010, il telescopio orbitante solare SOHO ha scoperto la sua duemillesima cometa) questo sistema è divenuto poco pratico e non è fatto alcun tentativo per assicurare ad ogni cometa un nome univoco, composto dalla denominazione dello strumento e dal numero. Invece, è stata adottata una designazione sistematica delle comete per evitare confusione.  Fino al 1994 alle comete era assegnata una designazione provvisoria composta dall’anno della scoperta seguito da una lettera minuscola ad indicare l’ordine di scoperta nell’anno (per esempio, la Cometa 1969i (Bennett) è stata la nona cometa scoperta nel 1969). Una volta che era stato osservato il passaggio al perielio della cometa e ne era stata calcolata l’orbita con una buona approssimazione, alla cometa veniva assegnata una designazione permanente composta dall’anno del passaggio al perielio e da un numero romano indicante l’ordine di passaggio al perielio nell’anno. Così la Cometa 1969i è diventata la Cometa 1970 II (la seconda cometa ad esser passata al perielio nel 1970).  Aumentando il numero delle comete scoperte, questa procedura divenne scomoda e nel 1994 l’Unione Astronomica Internazionale ha adottato una nuova nomenclatura. Adesso, al momento della loro scoperta le comete ricevono una sigla composta da “C/”, dall’anno della scoperta, da una lettera maiuscola dell’alfabeto e un numero; la lettera indica in quale mese e parte del mese (prima o seconda metà) è stata scoperta, il numero indica l’ordine progressivo di annuncio della scoperta, durante ogni periodo di mezzo mese; a questa sigla segue il nome dello scopritore. Possono essere attribuiti fino a tre nomi o, se il caso, il nome del programma o del satellite che ha effettuato la scoperta. Negli ultimi anni si è assistito alla scoperta della natura cometaria di numerosi oggetti ritenuti inizialmente di natura asteroidale. Se tale scoperta avviene entro breve tempo dall’individuazione dell’oggetto, viene aggiunta alla sigla asteroidale la parte iniziale della sigla attribuita alle comete periodiche (P/); se invece si tratta di asteroidi scoperti e osservati da anni, all’oggetto viene assegnata una seconda denominazione cometaria e mantiene anche quella asteroidale. Nella nomenclatura astronomica per le comete, la lettera che precede l’anno indica la natura della cometa e può essere:

  • P/ indica una cometa periodica (definita a tale scopo come avente un periodo orbitale inferiore ai 200 anni o di cui sono stati osservati almeno due passaggi al perielio);
  • C/ indica una cometa non periodica (definita come ogni cometa che non è periodica in accordo alla definizione precedente);
  • D/ indica una cometa disintegrata o “persa”;
  • X/ indica una cometa per cui non è stata calcolata un’orbita precisa (solitamente sono le comete storiche).
  • A/ indica un oggetto identificato erroneamente come cometa ma che è in realtà un asteroide.

Quando viene osservato un secondo passaggio al perielio di una cometa identificata come periodica, ad essa viene assegnata una nuova denominazione composta da una P/, seguita da un numero progressivo dell’annuncio e dal nome degli scopritori secondo le regole precedentemente indicate.  Così la Cometa di Halley, la prima cometa ad essere stata individuata come periodica, presenta anche la designazione 1P/1682 Q1. Una cometa non periodica come la Cometa Hale-Bopp ha ricevuto la denominazione C/1995 O1. Le comete mantengono la denominazione asteroidale se l’hanno ricevuta prima che fosse identificata la loro natura cometaria, un esempio ne è la cometa P/2005 YQ 127 (LINEAR). Ci sono solo cinque oggetti catalogati sia come asteroidi che come comete ed essi sono: 2060 Chiron (95P/Chiron), 4015 Wilson-Harrington (107P/Wilson-Harrington), 7968 Elst-Pizarro (133P/Elst-Pizarro), 60558 Echeclus (174P/Echeclus) e118401 LINEAR (176P/LINEAR (LINEAR 52)).

La  panspermia

Sette articoli pubblicati sulla rivista Science (Volume 314, Issue 5806, 2006) da un team di scienziati internazionali, tra i quali sette italiani, annunciano la scoperta nei grani di polvere della cometa Wild 2 di lunghe molecole organiche, di ammine precursori di quelle organiche, come il Dna. La sonda Stardust, dopo aver percorso 4,6 miliardi di chilometri in circa sette anni ha catturato un centinaio di grani ognuno piccolo meno di un millimetro. I grani sono stati catturati il 2 gennaio 2004 dalla coda della cometa Wild 2 con una speciale filtro in aerogel, una sostanza porosa dall’aspetto lattiginoso. Gli scienziati autori della scoperta ritengono che questa scoperta sia la conferma della panspermia, la teoria secondo la quale molecole portate dalle comete siano alla base dell’origine della vita sulla Terra. È una teoria che nacque nei primi anni del Novecento e compatibile con le osservazioni fatte dalla sonda europea Giotto nel 1986 quando si avvicinò alla cometa di Halley. A sostegno di questa ipotesi vengono citati anche i tempi rapidi con la quale sarebbe comparsa la vita sulla Terra. Secondo i cultori di questa teoria la situazione sulla Terra sarebbe mutata radicalmente in poche decine di milioni di anni e tempi così rapidi secondo loro si possono spiegare solo con l’ipotesi che a portare gli ingredienti fondamentali alla vita siano state le comete.

Lascia un commento