Destinazione Venere…10 anni dopo (missione conclusa a dicembre 2014)

Sono passati 10 anni da quel 9 novembre 2005 quando venne lanciata la sonda dell’ESA Venus Express, missione con una forte partecipazione INAF e il supporto finanziario dell’ASI. La sonda, arrivata su Venere l’11 aprile 2006, è stata per otto anni il nostro “inviato speciale” all’interno del Sistema solare fino a metà del dicembre 2014, quando la missione è stata dichiarata conclusa (pensate che sarebbe dovuta durare solo 500 giorni!). Venus Express è stata una missione di fondamentale importanza perché per prima ha esplorato “in lungo e in largo” il secondo pianeta del Sistema solare. È la seconda missione interplanetaria dell’ESA dopo Mars Express. Il veicolo spaziale ha raccolto negli anni una grande quantità di dati sul pianeta, sull’atmosfera e sulla sua superficie. L’Italia e l’INAF, come detto, sono presenti con gli strumenti VIRTIS (una camera iperspettrale nel visibile e nell’infrarosso ideata dallo IAPS di Roma) e PFS (uno spettrometro), con una importante partecipazione su ASPERA-4 (dedicato allo studio del plasma). Di particolare interesse per gli scienziati proprio l’atmosfera di Venere, la più densa di tutto il Sistema solare e composta per la maggior parte da anidride carbonica. Venere è anche avvolto da uno spesso strato di nuvole composte da acido solforico. Questa combinazione di gas con lo strato di nubi perenne ha portato ad un riscaldamento serra enorme, portando la temperatura superficiale di Venere poco oltre i 450ºC. Ma soprattutto la densità di nuvole e atmosfera ha da sempre nascosto ai nostri occhi il pianeta, impenetrabile dai telescopi a terra. Particolare fenomeno è quello dei venti che soffiano più in alto delle nuvole soffiano a 400 chilometri orari, quindi 60 volte più veloce della rotazione planetaria, con fenomeni quali i famosi vortici polari. Nel corso degli anni la sonda Venus Express ha dimostrato che i vortici polari di Venere sono tra i più variabili del Sistema solare. Questa serie di immagini riprende proprio i venti che soffiano al polo sud del pianeta e sono state scattate da VIRTIS da febbraio 2007 (in alto a sinistra) ad aprile 2008 (in basso a destra). La forma dell’ “occhio” del vortice, che spesso va dai 2000 ai 3000 chilometri, cambia repentinamente per cause ancora non totalmente chiare. Proprio l’anno scorso la sonda è stata spinta fino agli strati più bassi dell’atmosfera, un’operazione molto rischiosa, ma sempre effettuata in sicurezza, con un rischio aggiuntivo dovuto alla ridotta quantità di carburante rimasto disposizione: nel luglio scorso, alla fine, Venus Express nella sua ultima missione estrema ha raggiunto l’altitudine di soli 129,2. Difficile – poi in effetti impossibile – è stata la fase di risalita, perché la sonda non è riuscita a riprendere l’altezza corretta a causa dell’esaurimento del combustibile dei suoi razzi di manovra. Da quel momento l’inizio della fine di una missione straordinaria. Su Media INAF il commento di Giuseppe Piccioni, dell’INAF-IAPS di Roma, principal investigator di VIRTIS. È un giorno da celebrare: «Abbiamo “spremuto” per lungo e per largo la sonda con tutti gli strumenti a bordo per avere veramente il massimo in termini di ritorno scientifico. I tantissimi ed importanti risultati scientifici ottenuti sulla comprensione del pianeta “gemello” sono ormai parte della storia scientifica e dell’esplorazione spaziale. Di sicuro il nostro lavoro non è ancora terminato». Piccioni ha aggiunto: «La missione Venus Express è ormai da tutti considerata a livello internazionale un solido riferimento per la scienza venusiana e da cui partire per le future auspicabili prossime esplorazioni. Non da meno, ha sicuramente contribuito a rinnovare un interesse internazionale per il pianeta “dimenticato” ed un appetibile obiettivo di missione spaziale per vari paesi emergenti».
Redazione Media Inaf

 

Nel futuro c’è Marte

L’uscita ormai prossima del film The Martian riaprirà sicuramente anche presso il grande pubblico il sogno, o per alcuni la questione, dell’esplorazione umana di Marte. Dalle osservazioni di Schiaparelli prima e di Lowell, che dalle osservazioni dell’astronomo italiano prese lo spunto, nacque l’idea che Marte potesse essere un pianeta abitabile e forse abitato. Un’ipotesi che, per inciso, diede lo spunto a tutta la letteratura di fantascienza e che continuò fino ai giorni nostri, o quasi. Fu infatti solo con le missioni spaziali, superando la barriera che l’osservazione astronomica da Terra impone con le misure che la scienza planetaria consente, che si fu in grado di stabilire che Venere, l’altro pianeta sospettato di essere abitabile, e Marte non ospitavano forme di vita visibili. Per Marte in particolare lo shock ci fu con le immagini che la prima missione americana, Mariner 4, che 50 anni fa raggiunse il pianeta. Mostravano, anche se a bassissima risoluzione, un pianeta arido, cosparso di crateri e totalmente privo dei “canali” visti da Schiaparelli e Lowell. Da quel primo lontano fly-by ad oggi molte altre missioni si sono succedute. Dal 1960 ad oggi le missioni lanciate verso Marte sono state 41 tra sovietiche, di cui nessuna ha raggiunto l’obiettivo, e americane, anche loro con 5 insuccessi, e poi una europea, una indiana ed una giapponese. Ogni missione ha aumentato la conoscenza del pianeta, solo per ricordarne alcune: Mariner 9 con le prime immagini a colori, il primo atterraggio con successo de la vista di Marte dalla sua superficie con i Viking nel 1979, il primo rover Pathfinder, piccolo ma in grado di dimostrare di potersi muovere sulla superficie, Mars Express, la prima missione europea con a bordo uno strumento, il radar sounder italiano MARSIS, che ha aperto una nuova frontiera di ricerca, MSL un grande rover mosso da energia nucleare che sta dimostrando che si può pensare ad una mobilità estesa per le missioni future. Ed il futuro, anche quello con astronauti che cammineranno sulla superficie del Pianeta Rosso, è quello che si sta ora iniziando a costruire. E’ vero che fino ad oggi non abbiamo l’evidenza che su Marte si sia sviluppatala vita, anche se in forma primitiva tipo quella dei batteri estremofili che con sorpresa abbiamo scoperto riescono a vivere anche nelle nicchie più ostili della Terra, ma è anche vero che abbiamo scoperto, e stiamo continuando a scoprire, che le condizioni geologiche necessarie ci sono state ad iniziare dalla presenza di acqua liquida sulla sua superficie ed anche della presenza di tutti i minerali necessari. Inoltre, grazie anche a strumenti sviluppati in Italia, si è potuto determinare che l’acqua, elemento essenziale per la sopravvivenza su lungo periodo dell’uomo, sia pure sotto forma di ghiaccio è abbondante. Ce lo hanno detto soprattutto i due radar sounder MARSIS e Sharad, sviluppati grazie all’ingegno di uno scienziato dell’Università la Sapienza, che ci ha lasciato da poco, il prof. Giovanni Picardi e dei suoi discepoli. Quando il primo di questi strumenti del tutto innovativi capaci di fare la radiografia fino a chilometri di profondità e di determinare la presenza di ghiaccio o acqua nascosti nelle viscere del pianeta, fu proposto per la missione Mars Express eravamo nel 1996 durante una riunione del gruppo internazionale di coordinamento per l’esplorazione di Marte IMEWG. La riunione era al KSC in occasione del lancio di Pathfinder, c’era stato da poco l’ennesimo fallimento di una missione sovietica. Mars ’96, che aveva a bordo anche quattro strumenti europei, tra cui quello italiano PFS di Vittorio Formisano dell’INAF, tutti gli strumenti avevano dei modelli “spare” disponibili in laboratorio ed ESA propose di realizzare una missione, fast, per portarli su Marte e che c’era posto per altri due strumenti. ASI propose MARSIS che comunque dovette superare una dura selezione visti che come sempre c’erano altri forti competitori, e poi lo realizzò. Era una nuova frontiera che fu seguita rapidamente dalla proposta che l’ASI fece alla NASA per un secondo radar dello stesso tipo, anche se con frequenze leggermente diverse per ampliare il ritorno scientifico con una sinergia operativa tra i due, che portò al lancio il 12 agosto del 2005 di SHARAD, a bordo di MRO. Oggi abbiamo una buona mappatura di Marte fino a circa 5 km di profondità, sappiamo dove sono le riserve di ghiaccio principali e che l’acqua contenuta nella sola calotta polare nord sarebbe sufficiente a ricoprire l’intero pianeta con un oceano dello spessore di 8 metri. Ora, e saranno le missioni in fase di sviluppo per il 2018 e 2020 dobbiamo cercare le riserve più prossime alla superficie. Questo è uno degli obiettivi che si pongono sia Exomars 2018 dell’ESA, che Mars 2020 della NASA. Exomars sarà il primo rover marziano equipaggiato con un drill, una trivella, capace di bucare fino a 2 metri di profondità, fare misure spettroscopiche all’interno del foro e dare campioni agli strumenti di bordo. Anche il drill è uno strumento made in Italy e lo spettrometro contenuto all’interno della sua punta di perforazione nasce dall’intuizione di un’altra scienziata italiana, prematuramente scomparsa, Angioletta Coradini dell’INAF. Un altro obiettivo di Exomars è cercare, nei campioni sottosuperficiali catturati dal drill e con l’utilizzo strumenti specifici, le tracce di elementi organici correlati alla vita per dirimere, si spera finalmente, la questione se c’è stata o c’è vita su Marte. Mars 2020 si concentrerà soprattutto sull’estendere le ricerche geofisiche già condotte da MSL e in particolare, collezionare dei campioni da mettere in un contenitore sigillato che resterà disponibile sulla superficie di Marte aspettando una successiva missione, nel 2022 o 24, che li riporterà a sulla Terra. Il ritorno dei campioni a terra ha una duplice valenza: da un lato scientifica, la possibilità di analizzarli con strumentazioni che non possono essere portate su un altro pianeta ad esempio per effettuare la datazione assoluta, dall’altra dimostrare che è possibile fare un viaggio di andata e ritorno. Provare le tecnologie per ripartire dalla superficie di Marte e tornare sulla Terra è uno dei passi fondamentali per il successo dell’esplorazione umana. Molte altre cose si devono provare anche con gli astronauti e la strategia che ora si sta delineando inizia con un ruolo, diverso da quello prevalente fino ad oggi, per la ISS che può diventare il campo di prova per studiare il comportamento del corpo umano a lunghissime esposizioni all’ambiente spaziale, a cominciare dagli effetti della microgravità sulla circolazione del sangue e dei liquidi linfatici per periodi di un anno e più, alle tecnologie per la protezione dalla radiazione fino alle tecniche di rendez-vous e docking. Il passo successivo, che in effetti sarà progettato me realizzato in parallelo, sarà quello di sviluppare un nuovo lanciatore molto potente per realizzare un outpost in orbita circumlunare, catturare un asteroide ed far operare degli astronauti in un ambiente via via più lontano dalla Terra. Dopo la Luna si prevede di andare in orbita intorno a Marte, operare da li, imparare ad andare e tornare nel modo più efficiente possibile e , finalmente, atterrare su Marte. La lista delle cose da fare è lunghissima e va dal realizzare nuove tute, nuovi attrezzi, rover per lo spostamento umano, moduli abitabili in grado anche di assicurare un adeguato schermaggio dalle radiazioni, realizzare impianti di produzione di energia anche per sciogliere il ghiaccio o alimentare le serre per la produzione di cibo, fino a realizzare un sistema di telecomunicazioni in grado di assicurare una capacità di collegamento continuo anche quando il Sole si frappone tra la Terra e Marte impedendo, come ora succede, di comunicare. Stiamo parlando di un orizzonte temporale che potrebbe vedere l’atterraggio su Marte nella sconda metà degli anni trenta di questo secolo. Nel frattempo si faranno altre missioni più tipicamente scientifiche per meglio caratterizzare e capire i meccanismi fondamentali che hanno determinato l’evoluzione di Marte, e quindi anche capire meglio quelli che determinano l’evoluzione della Terra, al contempo affinando alcune tecnologie critiche. Il primo esempio di queste missioni è Exomars 2016 che vedrà il prossimo anno il primo vero lander europeo, non un piccolo esperimento scientifico come fu Beagle2, atterrare su Marte e un satellite entrare in orbita. L’italia è in prima fila in questo sforzo europeo e guida il consorzio di nazioni che sta consentendone la realizzazione. Italiani saranno i due esperimenti scientifici sul lander, che è stato denominato su proposta italiana Schiaparelli, che effettueranno misure chiave delle condizioni dell’atmosfera, a cominciare dal contenuto di polveri, durante la discesa e la permanenza sulla superficie. A forte partecipazione italiana è anche la camera ad alta risoluzione che è a bordo del TGO, ovvero il satellite, che consentirà di produrre una mappa ad alta risoluzione dell’elevazione della superficie di Marte aiutando così in maniera fondamentale la selezione dei futuri siti di atterraggio a cominciare da quello per il rover del 2018. L’industria italiana , TAS-I, cui è stato assegnato il ruolo di prime industriale per Exomars sta ora completando i test finali su Schiaparelli ed il TGO che saranno spediti, a fine autunno, in Russia per il lancio. Il futuro dell’esplorazione di Marte sarà uno sforzo necessariamente internazionale cui l’Italia, con l’ASI e la comunità scientifica ed industriale, sta già guardando con attenzione. Abbiamo alle spalle una lunga tradizione di successo con gli strumenti scientifici ed una comunità scientifica al massimo livello mondiale, con la realizzazione di buona parte dell’area abitabile della ISS, con una grande tradizione di astronauti di riconosciuta capacità, una lunga tradizione di collaborazione internazionale dove l’Italia con l’ASI partecipa a tutti i board di progetto per l’esplorazione di Marte. Ci sono quindi tutte le condizioni per avere anche in questo scenario futuro dell’esplorazione di Marte, e dei necessari passi intermedi, un ruolo importante. Sarà lungo e c’è molto da lavorare non solo per noi ora, ma anche e soprattutto per le prossime generazioni.
Enrico Flamini coordinatore scientifico dell’Agenzia Spaziale Italiana

Protoammassi, i dinosauri del cosmo

Sono grandi, grandissimi, immensi. Più di loro c’è solo l’universo. Eppure, per individuarli con certezza, si è reso necessario lo sforzo congiunto dei due gioielli a infrarossi e microonde dell’Agenzia spaziale europea, i satelliti gemelli Herschel e Planck. Stiamo parlando di ammassi di galassie: le strutture gravitazionalmente legate più estese che si possano osservare nel cosmo. O meglio, dei loro antenati, visto che i 234 esemplari rinvenuti – e identificati – dalla coppia di telescopi spaziali dell’ESA nelle profondità della radiazione submillimetrica risalgono a quando l’universo aveva appena tre miliardi di anni. Creature “preistoriche” che gli astronomi chiamano protoammassi di galassie: l’anello mancante fra quelle chiazze colorate che nelle mappe del fondo cosmico a microonde di Planck rappresentano regioni primordiali ad alta densità e gli attuali ammassi di galassie. Per individuarli e identificarli, dicevamo, si è dovuto far ricorso ai “gemelli” Herschel e Planck. Gemelli eterozigoti, occorre sottolineare: lanciati da mamma ESA lo stesso giorno, a bordo dello stesso vettore, per trascorrere la loro breve esistenza operativa fianco a fianco in L2, il punto lagrangiano secondo, Herschel e Planck sono – o meglio, erano, dato che ora sono entrambi in pensione – al tempo stesso profondamente diversi e perfettamente complementari: teleobiettivo a infrarossi il primo, grandangolo a microonde il secondo, messi insieme diventano lo strumento ideale per i paleontologi del cosmo. E così infatti è stato. La prima mossa è toccata a Planck. Capace proprio per l’ampiezza del suo sguardo d’osservare l’intero cielo a lunghezze d’onda millimetriche e submillimetriche (quelle tipiche dei segnali che ci giungono dall’alba dell’universo), ha stilato la lista dei sospetti: un catalogo di 234 zone primordiali ad alta densità di materia barionica, dunque potenziali antichi ammassi di galassie. Candidati protoammassi, in gergo astrofisico. Quindi si è passati alla seconda fase: l’interrogatorio e la conseguente identificazione, uno a uno, di tutti i sospettati. «Abbiamo dato in pasto a Herschel, quand’ancora era operativo, il catalogo di questi candidati protoammassi così da poterli osservare a più alta risoluzione», spiega uno dei coautori dello studio appena pubblicato su Astronomy & Astrophysics, Mattia Negrello, ricercatore all’INAF di Padova, «e questo ci ha permesso di dimostrare che erano di fatto costituiti da tante galassie individuali. Galassie che, com’è emerso analizzando i dati di Herschel, si trovano a distanze molto simili: la loro luce, in particolare, è stata emessa quando l’universo aveva attorno ai 3 o 4 miliardi di anni». Insomma, oggetti veramente primordiali. Una scoperta destinata ad avere importanti conseguenze sui modelli di formazione galattica, questa realizzata grazie alla coppia di gemelli ESA. Il fatto che le galassie presenti nei protoammassi, dunque nelle primissime fasi della loro formazione, potessero già raggiungere tassi di formazione stellare e quantità di polveri così elevate, e in tempi scala così rapidi, è sorprendente. Ricadute per l’astrofisica, dunque, ma anche per la cosmologia. «Anche solo il semplice numero per unità di volume di questi protoammassi», osserva infatti Negrello, «può essere un indicatore a favore d’un modello cosmologico rispetto a un altro, perché l’abbondanza di questi ammassi dipende anche dalla geometria dell’universo».
di Marco Malaspina (INAF)

La misteriosa fascia calda di Venere

Anche se Venus Express, la sonda europea che ha scrutato il “gemello bollente” della Terra per 8 anni, ha cessato definitivamente l’attività lo scorso dicembre, i dati raccolti durante il suo onorato servizio continuano a riservare sorprese. L’ultima in ordine di tempo è svelata sulle pagine di Planetary and Space Science da un gruppo internazionale di scienziati, guidati dall’italiana Arianna Piccialli del LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales) di Guyancourt, in Francia.
Durante la compilazione di una mappa termica della parte alta dell’atmosfera nel lato “notturno” di Venere, gli scienziati hanno scoperto uno strato di aria calda nell’atmosfera del pianeta, la cui natura risulta, al momento, ancora sconosciuta.
«Abbiamo misurato le temperature ad altitudini variabili tra 90 e 140 km», spiega uno degli autori dello studio, Denis Belyaev dell’Istituto di ricerche spaziali dell’Accademia russa delle Scienze. «Sul lato non illuminato del pianeta le temperature normalmente tendono ad abbassarsi con l’altitudine, ma noi abbiamo notato un picco nel grafico in corrispondenza della fascia tra 90 e 100 km. Qui l’atmosfera era di 20-40°C più calda di quanto ci aspettassimo».
«Non sappiamo ancora che cos’è che provoca questo riscaldamento», prosegue Belyaev, «ma lo strato di ozono di Venere si trova proprio a questa altitudine, quindi è possibile che ci sia una qualche connessione. Non possiamo affatto escludere che questo fenomeno possa essere spiegato da reazioni chimiche, cioè dalla decomposizione dell’ozono quando viene a contatto con sostanze a base di cloro. Reazioni che sarebbero in grado di rilasciare calore».
«C’è anche un’altra possibile spiegazione per la presenza dello strato di aria calda», aggiunge Piccialli. «Può essere il risultato del riscaldamento adiabatico dovuto alla subsidenza dell’aria – il movimento discendente di una massa d’aria che provoca un riscaldamento per compressione – sul lato notturno del pianeta».
Piccialli e colleghi hanno analizzato i dati ottenuti dallo strumento SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus), uno spettrometro per l’indagine sulle caratteristiche dell’atmosfera di Venere installato a bordo della sonda Venus Express.
La temperature atmosferica viene misurata grazie al canale sensibile agli ultravioletti (UV) di cui è equipaggiato SPICAV, con il metodo dell’occultazione stellare, dove lo spettrometro cattura la luce emessa da una stella proprio quando passa dietro al pianeta. La luce della stella passa attraverso l’atmosfera di Venere, portando con sé le informazioni sulle sue caratteristiche, leggibili dagli esperti nella scomposizione spettrale che SPICAV effettua sulla luce della stella.
E’ un lavoro che richiede pazienza. Prima gli scienziati selezionano le stelle che brillano di più nelle lunghezze d’onda dell’ultravioletto, il campo di lavoro dello spettrometro. Poi durante l’occultazione, che dura pochi minuti prima che la stella scompaia dietro l’orizzonte del pianeta, lo spettrometro esegue una rilevazione ogni secondo. Successivamente gli scienziati determinano la composizione, la densità e la temperatura dell’atmosfera a diverse quote. Dal giugno 2006 al febbraio 2013 sono stati ottenute ben 587 di queste istantanee dall’atmosfera, che hanno fornito una panoramica praticamente completa dell’emisfero non illuminato di Venere.
«In quasi tutte le sessioni di questi sette anni abbiamo rilevato uno strato a 90-100 km di altezza che è di ben 20-40 gradi più caldo di quello che dovrebbe essere, con temperature attorno ai 220-240 gradi Kelvin (tra -53 e -33 gradi Celsius, ndr), mentre dovrebbero risultare anche inferiori a 200° K», ribadisce Belyaev.
I ricercatori hanno inoltre scoperto un’altra peculiarità dell’alta atmosfera di Venere. Venere è un pianeta unico, che non ruota nella direzione del suo movimento lungo l’orbita circumsolare, ma nella direzione opposta, a causa del suo asse di rotazione inclinato di 177 gradi. In più, ruota molto lentamente, impiegando 243 giorni terrestri per una rotazione completa. Tuttavia, proprio a causa del moto retrogrado combinato allo spostamento sull’orbita, tra un’alba e l’altra trascorrono “soltanto” 117 giorni terrestri.
Durante la lunga notte venusiana, la parte superiore dell’atmosfera si raffredda, quindi l’alba venusiana dovrebbe essere più fredda rispetto al tramonto. Invece i ricercatori hanno scoperto che la temperatura atmosferica è di 20 gradi più calda al mattino presto rispetto alla sera, proprio il contrario di quanto si aspettavano.
«Questo è probabilmente dovuto alla circolazione globale dell’atmosfera», commenta Belyaev, «nella quale, ad un’altitudine di circa 100 chilometri, si osserva una transizione dove si sovrappongono due diversi regimi di circolazione: si passa dalla super-rotazione, osservata nella bassa mesosfera, alla circolazione solare-antisolare. In questa zona, sul lato notturno, la massa d’aria scende fino a 70 km, il che può portare al riscaldamento adiabatico dell’atmosfera».
di Stefano Parisini (INAF)

Il giorno di Saturno (10 ore, 32 minuti e 44 secondi)

Quanto dura un giorno su Saturno? Un po’ meno di 11 ore, questo è sicuro. Ma agli scienziati, si sa, non piace accontentarsi di informazioni così approssimative e da anni, studiando il pianeta degli anelli, cercano di ottenere misure accurate del suo periodo di rotazione. Una informazione tutt’altro che marginale o di pura curiosità: conoscere con precisione questo valore può aiutarli a capire meglio altri aspetti del pianeta, come la sua struttura e composizione interna. Il compito però è alquanto difficile perché Saturno è un pianeta gassoso che non possiede strutture solide individuabili, al contrario della Terra o Marte, per esempio, che possono essere prese come facile riferimento per cronometrare in quanto tempo il corpo celeste compie una rotazione completa attorno al suo asse.
Ora però un nuovo metodo per determinare il periodo di rotazione di Saturno arriva dalle pagine dell’ultimo numero di Nature. A metterlo a punto, un gruppo di ricercatori guidato da Ravit Helled, dell’Università di Tel Aviv. La nuova tecnica, che si basa sulle misure del campo gravitazionale di Saturno e delle sue differenti configurazioni lungo gli assi nord-sud ed est-ovest, ha permesso di ricavare che un giorno di Saturno dura 10 ore, 32 minuti e 44 secondi.
«Negli ultimi venti anni, il periodo di rotazione standard di Saturno comunemente accettato è stato quello misurata dal Voyager 2 negli anni ’80 del secolo scorso: 10 ore e 39 minuti, e 22 secondi», spiega Helled. «Ma quando la sonda Cassini è arrivata a Saturno 30 anni dopo, il periodo di rotazione calcolato dalle sue osservazioni è salito di otto minuti. Abbiamo capito così che questo valore non poteva essere dedotto dalle misure delle fluttuazioni di intensità delle onde radio associate al campo magnetico di Saturno, e dunque rimaneva di fatto sconosciuto. Ovviamente, negli ultimi anni, ci sono stati diversi tentativi teorici per trovare una risposta a questo enigma. Noi proponiamo la nostra, che si basa sulla forma e il campo gravitazionale del pianeta. Osservandone le proprietà  globali, abbiamo determinato così il periodo di rotazione».
Il metodo proposto si basa su processi di ottimizzazione statistica che hanno coinvolto diverse soluzioni. Innanzitutto, queste soluzioni dovevano essere in grado di riprodurre nel modo più accurato possibile le proprietà osservative di Saturno, in particolare la sua massa e il suo campo gravitazionale. Le migliori tra quelle ottenute sono state infine utilizzate per ricavare il periodo di rotazione. Come verifica, il team ha applicato il metodo per calcolare il periodo di rotazione di Giove, ottenendo risultati in ottimo accordo con quelli ottenuti con altre tecniche, noti con precisione. Il prossimo passo è quello di estendere questo metodo ad altri pianeti gassosi del Sistema solare, come Urano e Nettuno. E magari anche oltre, fino a pianeti gassosi in orbita attorno ad altre stelle.
di Marco Galliani (INAF)

Rosetta trova l’azoto molecolare

La missione Rosetta dell’ESA si intasca un altro primato scientifico. Sua infatti la prima misura della presenza di azoto molecolare (N2) in una cometa. Non che l’azoto sia sconosciuto su questi corpi celesti,anzi. Questo elemento chimico è già stato rivelato nella chioma e nella coda di altre comete, ma legato con altre specie a formare vari composti, come acido cianidrico e ammoniaca. L’avere scoperto ora anche la sua variante ‘pura’ allo stato di molecola, ovvero due atomi identici legati insieme, da informazioni assai preziose per chiarire le condizioni ambientali del Sistema solare ancora in fase di formazione, la stessa epoca in cui risale l’origine della cometa 67P/Churiumov/Gerasimenko. Gli scienziati ritengono infatti che l’azoto molecolare fosse la forma di aggregazione più comune di questo elemento all’alba del nostro sistema planetario, soprattutto nelle regioni più periferiche e fredde, oggi il regno dei giganti gassosi, dove lo si trova in abbondanza anche nell’atmosfera di Titano, la maggiore delle lune di Saturno, o nelle atmosfere e nei ghiacci superficiali di Plutone e Tritone, satellite di Nettuno. I nuovi risultati, che vengono pubblicati in un articolo sull’ultimo numero della rivista Science, sono basati su 138 misure raccolte dallo strumento ROSINA (Rosetta Orbiter Spectrometer cor Ion and Neutral Analysis) a bordo di Rosetta tra il 17 e il 23 ottobre scorso, quando il veicolo spaziale orbitava a circa 10 km dal centro della cometa.
«Identificare le zone dove si trova l’azoto molecolare ci permette di fissare vincoli stringenti sulle condizioni in cui si è venuta a formare la cometa, poiché questo composto richiede molto basse per essere intrappolato nel ghiaccio», dice Martin Rubin dell’Università di Berna, primo autore dello studio.
La cattura di azoto molecolare nei ghiacci presenti nella nebulosa protosolare dovrebbe essere avvenuta a temperature analoghe a quelle richieste per l’intrappolamento di monossido di carbonio. Così, gli scienziati hanno confrontato il rapporto tra azoto molecolare e monossido di carbonio sulla cometa a quello della nebulosa protosolare, come calcolato sul rapporto tra azoto e carbonio misurato su Giove e nel vento solare.
Tale rapporto per la cometa 67P/Churyumov-Gerasimenko risulta essere circa 25 volte inferiore a quello del valore ricavato per l’ambiente di formazione del Sistema solare. Gli scienziati pensano che questa diminuzione possa essere una conseguenza della formazione di ghiaccio a bassissime temperature nella nebulosa primordiale.
Un altro interessante aspetto legato alla presenza di azoto nella cometa è il ruolo che questi corpi celesti possono aver avuto nel disseminare questo elemento chimico sui pianeti del Sistema solare, Terra inclusa.
«Così come abbiamo indagato per conoscere il ruolo delle comete nel rifornire di acqua la Terra, vorremmo trovare vincoli sul rilascio di altri ‘ingredienti’, in particolare quelli che costituiscono i mattoni della vita, come l’azoto», dice Kathrin Altwegg, sempre dell’Università di Berna, Principal Investigator per ROSINA.
Le indagini condotte, basate sui rapporti sui rapporti di due isotopi dell’azoto, 14N e 15N, indicano però che le quantità di questo elemento nell’atmosfera terrestre non possono essere completamente spiegate attraverso il meccanismo del rifornimento da parte di comete come quella che sta studiando Rosetta.
di Marco Galliani (INAF)

Rosetta e la cometa 67P/Churyumov Gerasimenko

Rosetta è una missione spaziale sviluppata dall’Agenzia Spaziale Europea e lanciata nel 2004. L’obiettivo della missione è, dopo un cambio dovuto alla posticipazione del lancio, lo studio della cometa 67P/Churyumov-Gerasimenko. La missione è formata da due elementi: la sonda vera e propria Rosetta e il lander Philae, atterrato il 12 novembre 2014 sulla superficie della cometa 67P/Churyumov Gerasimenko.
Storia della missione
Nel maggio 1985 il Solar System Working Group dell’ESA propose che una delle missioni più importanti per il programma Horizon 2000 dovesse essere una missione di prelievo di campioni cometari con ritorno sulla Terra. A fine 1985 fu costituito un gruppo di lavoro misto ESA/NASA per definirne gli obiettivi scientifici.
Nel 1986 l’arrivo della cometa di Halley fu seguito da diverse sonde provenienti da più nazioni, fornendo dati preziosi per la preparazione della nuova missione.
La NASA si concentrò sullo sviluppo del Comet Rendezvous Asteroid Flyby detta anche missione CRAF, mentre l’ESA studiò una missione che prevedesse l’inseguimento del nucleo di una cometa e il trasporto di alcuni frammenti a terra. Entrambe le missioni erano basate sulla precedente missione Mariner Mark II in modo da ridurre i costi di sviluppo. Nel 1992 la NASA decise di eliminare il progetto CRAF per via di limitazioni impostele dal congresso degli Stati Uniti d’America. Nel 1993 si rese palese che una missione con il trasporto di campioni sulla terra sarebbe stata troppo costosa per il bilancio ESA e quindi si decise di riprogettare la missione rendendola simile alla defunta missione CRAF statunitense. La missione fu riprogettata prevedendo un’analisi in loco con l’utilizzo di un lander.
La missione sarebbe dovuta partire il 12 gennaio 2003 per raggiungere la cometa 46P/Wirtanen nel 2011. Tuttavia i progetti furono modificati quando l’Ariane 5, il vettore scelto per lanciare Rosetta, fallì un lancio l’11 dicembre 2002. I nuovi progetti previdero il lancio il 26 febbraio 2004 e il raggiungimento nel 2014 della cometa 67P/Churyumov-Gerasimenko. Dopo due lanci cancellati la missione Rosetta finalmente partì il 2 marzo 2004 alle 7:17 UTC. Sebbene fosse cambiata la data del lancio lo scopo della missione restò il medesimo. La sonda Rosetta doveva entrare in un’orbita molto lenta intorno alla cometa e progressivamente rallentare la sua orbita fino ad arrestarla in modo da prepararsi alla discesa del lander. Durante questa fase, la superficie della cometa è stata mappata da VIRTIS, l’occhio principale della sonda, per individuare il luogo migliore per l’atterraggio del lander. Il lander (inizialmente chiamato temporaneamente RoLand (Rosetta Lander), mentre un altro concept era chiamato Champollion, in seguito è stato definitivamente battezzato Philae) è atterrato sulla cometa con una velocità di 1 m/s (3,6 km/h). Appena raggiunta la superficie, un sistema di arpioni avrebbe dovuto ancorarlo alla superficie in modo da impedirgli di rimbalzare nello spazio. A causa di un problema tecnico, per assicurare il lander alla cometa, sono state utilizzate invece alcune trivelle.
Dopo essersi attaccato alla cometa il lander potrà iniziare le analisi scientifiche, che consistono in:
caratterizzazione del nucleo;
determinazione delle componenti chimiche presenti;
studio delle attività della cometa e dei suoi tempi di sviluppo.
Obiettivo principale della missione
L’obiettivo principale della missione è la cometa 67P/Churyumov–Gerasimenko; inizialmente avrebbe dovuto prelevare dei campioni e riportarli a terra (il nome iniziale della missione era Comet Nucleus Sample Return, ma in seguito, come spesso accade nelle missioni spaziali per problemi di costi, tempi e tecnologia, lo scopo finale della missione è stato modificato: orbitare intorno alla cometa da agosto 2014 a dicembre 2015, rilasciando a novembre 2014 una sonda secondaria destinata ad atterrare sulla cometa per analizzarne la composizione.
Il perché dei nomi
La sonda fu battezzata con il nome latino di Rosetta, per ricordare la stele di Rosetta, manufatto dell’antichità che riportava uno stesso testo in tre lingue diverse, tra cui il geroglifico, che permise a Champollion di tradurre l’antica lingua egizia, fino ad allora rimasta incomprensibile. Analogamente, la sonda Rosetta fa da anello di congiunzione tra i meteoriti, che gli scienziati possono studiare sulla Terra, e il sistema solare, che gli scienziati non possono visitare personalmente, ma che le comete attraversano continuamente.
Il lander è stato battezzato Philae, dal nome latino di un’isoletta sul Nilo, File, dove Giovanni Battista Belzoni ritrovò, nel 1817, un obelisco con iscrizioni in greco e geroglifico. L’obelisco fu utile, con la stele di Rosetta, per la decifrazione dei geroglifici.
Il luogo di atterraggio è stato battezzato Agilkia, altra isola del Nilo dove venne spostato il tempio di Iside, perennemente sommerso nell’isola di Philae (o File), a seguito della costruzione della diga di Assuan. (Tratto da Wikipedia)

Nuovo look per Titano

Quando una sonda viene lanciata in orbita le incognite sono molte: arriverà mai a destinazione? E se arriva all’obiettivo, riuscirà a rimanere in orbita abbastanza a lungo per catturare e analizzare dati? Come arriveranno questi dati sulla Terra è un’altra incognita, perché spesso sono inutilizzabili o altre volte non arrivano affatto. Poi ci sono missioni che durano più del previsto o che riescono ottenere immagini e analizzare dati che inizialmente sembravano impossibili. Questo perché molto spesso le missioni vengono ideate, progettate e realizzate nel corso di dieci o venti anni.
Come è accaduto nel caso della sonda Cassini, che è in orbita attorno a Saturno da 10 anni, dopo che la missione è stata estesa per ben due volte (nel 2008 e nel 2010) e si pensa di portarla avanti almeno fino al 2017. Di Cassini si è cominciato a parlar già nel 1982, anche se la progettazione vera e propria è iniziata solo negli anni ’90. In ben 10 anni di scoperte la sonda, nata dal lavoro congiunto di NASA/ESA/ASI, ha osservato e scrutato in ogni dettaglio anche una delle lune più famose del sesto pianeta del Sistema solare, Titano. In tutti questi anni, però, il modo di guardare a Titano è cambiato, o almeno sono cambiate le tecniche per analizzare i dati e le immagini che di volta in volta sono state inviate a Terra. L’italiano Synthetic Aperture Radar (SAR) montato a bordo di Cassini ha mappato nel corso del tempo la superficie del satellite naturale più grande del sistema di lune di Satruno, tracciato e rivelato vaste distese di dune di sabbia e “tuffato” nei mari di idrocarburi. Ma a volte le immagini che ci sono arrivate non erano molto nitide, nonostante la loro bellezza.
Grazie a una tecnica recentemente sviluppata per la gestione del rumore di fondo e delle interferenze elettroniche nelle immagini radar di Cassini, Titano ha assunto un look nuovo di zecca. La tecnica, che i suoi sviluppatori chiamano “despeckling” (cioè smacchiatura) produce delle immagini della superficie di Titano che sono molto più chiare, nitide e facili da guardare rispetto a ciò che in questi anni gli scienziati e il pubblico hanno guardato. Di certo 10 o 20 anni fa, i ricercatori non avrebbero mai immaginato che un giorno le immagini di Titano sarebbero mai state così nitide.
Di solito, le immagini radar di Cassini hanno un aspetto granuloso (per non dire fastidioso), che crea quello che in gergo viene chiamato “rumore”, un’interferenza che rende difficile l’interpretazione delle caratteristiche più piccole o l’identificazione dei particolari cambiamenti in foto scattate nel corso del tempo. La nuova tecnica sviluppata da Antoine Lucas (che lavora alla divisione astrofisica del Commissariato per l’energia atomica in Francia) si basa essenzialmente su un algoritmo per modificare questo rumore e rendere le immagini più fruibili. In pratica un modello matematico di “de-noising” o di soppressione del rumore.
“Ripulire” le immagini radar di Cassini ha una varietà di benefici scientifici, perché si potranno produrre mappe 3D (Digital Elevation Model, DEM) della superficie di Titano con un notevole miglioramento nella qualità. Con una visione più chiara di canali fluviali, delle coste lacustri e delle dune, i ricercatori saranno in grado di eseguire analisi più precise dei processi che modellano la luna di Saturno. Per non parlare poi del fatto che lo stesso rumore, la stessa interferenza, se analizzata separatamente, può contenere informazioni sulle proprietà della superficie e di sottosuolo.
In questo montaggio si può vedere come le immagini siano cambiate con la nuova tecnica di Lucas. Nella fila in alto sono state inserite le foto scattate dal SAR; nella fila in basso, invece, ci sono le immagini processate con la nuova tecnica di de-noising. Le tre coppie a sinistra ritraggono il Ligeia Mare, mentre nella coppia di foto a destra si vedono una serie di vallate e Jingpo Lacus. Ogni immagine rappresenta un’area larga nella realtà 112 chilometri.
«E’ una tecnica incredibile e Antoine ha fatto un gran lavoro nel dimostrare che è affidabile», ha detto Randy Kirk, membro del team che si occupa del radar di Cassini presso il Geologic Survey a Flagstaff (Stati Uniti). Kirk ha anche spiegato che i ricercatori stanno selezionando le immagini più importanti e con una più alta priorità su cui applicare la nuova tecnica e chissà se in futuro questo algoritmo non possa essere utilizzato anche per altre missioni. Magari fra qualche anno ne verrà sviluppato uno più avanzato e preciso. Questo è il bello della scienza e della tecnologia.
di Eleonora Ferroni (INAF)

Zoom sulla cometa

Mai così vicino: appena 6 km. Così vicino da essere più una carezza che un flyby. E visto che per una carezza non c’è giorno più appropriato di San Valentino, l’ESA ha scelto proprio il 14 febbraio per portare la sonda Rosetta alla minima distanza dalla cometa 67P. Il punto di avvicinamento massimo è stato raggiunto alle 13:41 ora italiana, mentre Rosetta sorvolava la regione battezzata Imhotep, sul lobo principale.
La foto che potete vedere sul sito INAF – non ritoccata in alcun modo, sottolineano giustamente orgogliosi dal centro di controllo della missione – raffigura un’area di 1.37 km di lato, ed è stata scattata dalla Navigation Camera di bordo circa un’ora e mezza più tardi, alle 15:15, quando la distanza era ancora alquanto ridotta: 8.9 km. Sufficiente a garantire un’immagine di ottima qualità, con una risoluzione di 0.76 metri per pixel.
L’immagine mostra in modo evidente la grande varietà del terreno cometario. Si notano formazioni affioranti in netto contrasto con le distese di suolo liscio, coperto di polvere. In alcune zone, per esempio al centro e lievemente sulla sinistra, si riconoscono rilievi quasi perfettamente circolari e piatti in superficie. Sparsi qua e là, massi che vanno da qualche metro a qualche decina di metri, il più grande dei quali, battezzato Cheops, si erge maestoso in alto al centro.
Rosetta si trova oggi a 345 milioni chilometri dal Sole. Il punto di minima distanza dal Sole, il perielio, sarà raggiunto il prossimo 13 agosto, quando la cometa viaggerà tra le orbite della Terra e di Marte a circa 186 milioni dalla nostra stella.
Redazione Media Inaf

Aggiornamenti su 67/P Churyumov-Gerasimenko

A una velocità di 20,9 km/s Rosetta, la sonda dell’Agenzia Spaziale Europea (ESA), e la cometa 67P/Churyumov-Gerasimenko si avvicinano sempre di più al Sole. Da quello che si può vedere in un’animazione dell’ESA (clicca QUI), infatti, mancano “solo” 382 milioni di chilometri al grande incontro con la nostra stella e in poco più di un mese hanno percorso ben 47 milioni di chilometri insieme. L’incontro al perielio (cioè il massimo avvicinamento al Sole) avverrà il prossimo 13 agosto 2015, quando passerà a 183 milioni di chilometri dal Sole, in un’orbita tra la Terra e Marte. Rosetta, che è stata lanciata nel 2004 e che ha percorso già 6,6 miliardi di chilometri nel Sistema solare, viaggia in tandem con la cometa ormai da novembre e continua a inviare a terra dati e immagini preziose per la missione, grazie ai suoi numerosi strumenti a bordo, tre dei quali Made in Italy (GIADA, VIRTIS e OSIRIS). Qualche settimana fa la sonda ha rivelato che la composizione dell’acqua della Terra e quella del ghiaccio (analizzato dallo strumento ROSINA a bordo di Rosetta) sono diverse e questo starebbe a significare che l’acqua sia giunta sul nostro pianeta non con le comete bensì con gli asteroidi. In più, gli strumenti hanno confermato che 67/P è una cometa polverosa, come si può notare dalle immagini pubblicate sul web dall’ESA. Le comete, infatti, viaggiano indisturbate attorno al Sole trasportando non solo ghiaccio, ma anche polvere e detriti vecchi come il Sistema solare stesso. Alcune immagini mostrano striature e macchie attorno al nucleo che probabilmente sono grani di polvere espulsi dalla cometa. La sonda è arrivata a 27,9 chilometri dal nucleo della cometa (a febbraio, l’ESA spera che la sonda sarà in grado di raggiungere la distanza di quattro chilometri) e si trova a 521 milioni di chilometri dalla Terra. Lo scorso 6 gennaio l’ESA ha pubblicato un nuovo mosaico di immagini creato grazie al contributo della NAVCAM, montata a bordo di Rosetta, a una risoluzione di 2,3 m/pixel. Le immagini mostrano una vista unica sul lobo più grande (riquadri in basso) e su quelli più piccoli (riquadri superiori), riprendendo le diverse strutture che compongono l’oggetto, dalle regioni lisce con massi sparsi ai terreni più ruvida e complessi. Già ad agosto del 2014 VIRTIS, il Visible Infrared and Thermal Imaging Spectrometer (progettato dall’INAF-IAPS di Roma) aveva permesso ai ricercatori di affermare che in gran parte la cometa è ricoperta di un materiale scuro e polveroso, che è poi quello che, con l’avvicinamento al Sole, viene rilasciato in quantità sempre più grandi, fino a formare la famosa coda. Uno strumento fondamentale per studiare questo materiale è il Micro-Imaging Dust Analysis System (MIDAS) che permette di misurare la velocità con cui la polvere arriva al veicolo spaziale e la dimensione dei granelli. Come funziona MIDAS? Molto semplicemente è come catturare delle zanzare: lo strumento è dotato di una superficie adesiva esposta su cui vanno a poggiarsi i granelli di polvere che poi vengono analizzati con un microscopio atomico. Il primo granello è stato osservato lo scorso novembre ed era molto più grande del previsto – circa 1/100 di millimetro di diametro – ma con una consistenza soffice e una forma non compatta, come ha detto Mark Bentley, principal investigator di MIDAS e ricercatore presso lo Space Research Institute (IWF) a Graz, Austria. Ma non è solo MIDAS che si occupa dello studio della polvere cometaria. Un altro strumento dal simpatico nome è COSIMA, il Cometary Secondary Ion Mass Analyser, che – nello specifico – ha studiato un granello denominato “Boris” in cui ha identificato sodio e magnesio. Il magnesio non è una sorpresa nello spazio dato che il 95% dei minerali osservati nelle comete assomigliano a materiali comuni in meteoriti e nel mantello superiore della Terra. Il sodio era già stato visto nelle code delle comete, ma la sua origine è ancora incerta.
La missione Rosetta andrà avanti fino agli ultimi giorni di quest’anno, quando la cometa si troverà a 2 unità astronomiche dal Sole (il doppio della distanza Terra-Sole) nella fase di allontanamento. Gli esperti, però, ipotizzano che i pannelli solari di cui è dotata la sonda avranno energia per altre due unità astronomiche e ciò vuol dire che potremo seguire la cometa fino a metà 2016 per poi perderla del tutto. I tecnici sperano che nelle fasi di avvicinamento il Sole riesca a ricaricare le batterie di Philae in modo tale che si possa risvegliare e riprendere la sua missione, dato che adesso è in “stan-by”  avendo esaurito la scorta di energia.
di Eleonora Ferroni (INAF)
Per saperne di più: Segui il Blog di Rosetta dell’ESA

Voci precedenti più vecchie