Come evolve l’universo? Chiedi alle simulazioni

L’Universo, si sa, è in continua espansione. Esso muta, creando nuove strutture che poi si aggregano nel corso del tempo. La domanda è: come fa ad evolvere? Oggi, alcuni fisici dell’Università di Ginevra (UNIGE), in Svizzera, hanno sviluppato una simulazione numerica che offre preziosi indizi sul complicato processo di formazione delle strutture cosmiche. Partendo dalle equazioni di Einstein, gli scienziati sono stati in grado di integrare nei loro calcoli la rotazione dello spazio-tempo e di misurare l’ampiezza delle onde gravitazionali, la cui esistenza è stata annunciata per la prima volta lo scorso 11 Febbraio. I risultati di questo studio sono pubblicati su Nature Physics. Fino ad oggi, i ricercatori hanno simulato la formazione delle strutture cosmiche su larga scala basandosi sulla gravitazione newtoniana. Questi codici postulano che lo spazio non cambia, cioè rimane statico, mentre evolve solo il tempo. Le simulazioni risultano molto precise se la materia presente nell’Universo si muove lentamente, ossia con una velocità di circa 300 Km/sec. Tuttavia, quando le particelle si muovono in un regime di velocità relativistiche, il codice fornisce solamente calcoli approssimati. Inoltre, esso non permette di descrivere le fluttuazioni dovute all’energia oscura, che con il suo contributo pari al 70 percento del contenuto materia-energia presente nell’Universo è responsabile dell’espansione cosmica accelerata. Dunque, da qui la necessità di trovare un nuovo modo per simulare la formazione delle strutture cosmiche allo scopo di studiare questi fenomeni. Il team di ricercatori guidato da Ruth Durrer del Dipartimento di Fisica Teorica presso la Facoltà di Scienze della UNIGE ha creato un nuovo codice, chiamato gevolution, che si basa sulle equazioni di Einstein. La teoria della relatività generale considera lo spazio-tempo come un’entità dinamica, il che vuol dire che sia lo spazio che il tempo cambiano continuamente, a differenza del concetto di spazio che Newton considerava statico nella sua teoria. Lo scopo di questo studio è quello di predire l’ampiezza e gli effetti associati alla generazione delle onde gravitazionali e la rotazione dello spazio-tempo, tecnicamente nota come frame-dragging, indotti dalla formazione delle strutture cosmiche. Per far questo, i fisici della UNIGE hanno analizzato una porzione cubica di spazio che consiste di 60 miliardi di zone ognuna delle quali contiene una particella (un po’ come dire una porzione di una galassia), per studiare il modo con cui esse si muovono rispetto alle particelle circostanti. Grazie alla libreria LATfield2, sviluppata da David Daverio della UNIGE, che permette di risolvere equazioni differenziali parziali non-lineari, e al supercomputer dello Swiss Supercomputer Center di Lugano, i ricercatori sono stati in grado di tracciare il moto delle particelle e calcolare la metrica (ossia la misura della distanza e del tempo tra due galassie) facendo uso delle equazioni della relatività. I risultati di questi calcoli permettono di quantificare le differenze tra i dati ottenuti dalla simulazione gevolution e quelli ricavati mediante i codici newtoniani. Ciò permette inoltre di misurare l’effetto della rotazione dello spazio-tempo e delle onde gravitazionali causati, come si diceva prima, dalla formazione delle strutture cosmiche. In realtà, la rotazione dello spazio-tempo e l’effetto dovuto alla presenza delle onde gravitazionali non è mai stato preso in considerazione prima della formulazione del codice gevolution. Questo approccio apre così un nuovo modo di confrontare i risultati forniti dalla simulazione con le osservazioni. Insomma, grazie a questo nuovo codice numerico, i fisici dell’UNIGE potranno ora disporre di un ulteriore strumento d’indagine in grado di testare la relatività generale su una scala di distanze molto più grande rispetto a quanto sia stato fatto in precedenza. Infine, il gruppo di Durrer renderà pubblico il codice gevolution in modo da favorire quanto più possibile la ricerca in questo campo. L’obiettivo finale è quello, almeno così si spera, di far luce sui misteri dell’energia oscura.
di Corrado Ruscica (INAF)

Costante cosmologica, quel lambda che ci salva

Era il cruccio di Einstein, quella dannata lettera lambda. S’era visto costretto a infilarla controvoglia nelle sue equazioni di campo della relatività generale per evitare che tutti gli oggetti presenti nell’universo finissero per ammassarsi l’uno sull’altro e scivolare inesorabilmente in un pozzo senza fondo dello spazio-tempo. Salvo poi rimangiarsi l’intuizione non appena Hubble offrì al mondo, con la scoperta dell’espansione dell’universo, una via di scampo alternativa. Fu allora che Einstein definì quel termine lambda, in apparenza ormai superfluo, «la più grande cantonata della mia vita». In realtà, mai cantonata fu più felice: negli ultimi decenni, quella lettera lambda prematuramente rinnegata è stata non solo riesumata e riabilitata, ma è diventata la protagonista irrinunciabile del modello standard della cosmologia, il modello Lambda-CDM, appunto. È lei la famosa costante cosmologica – identificata a volte, un po’ impropriamente, con l’energia oscura – alla quale dobbiamo l’accelerazione dell’espansione dell’universo. E se pensate che nulla vi possa riguardare di meno, sbagliate di grosso. Il perché lo spiega uno studio appena uscito su Physical Review Letters: se l’universo non si espandesse seguendo il ritmo imposto dalla costante cosmologica, i micidiali lampi di raggi gamma (GRB, dalle iniziali di gamma-ray burst), che spazzano l’intero cosmo con la potenza di fuoco di migliaia di supernove, avrebbero reso pressoché impossibile lo sviluppo di forme di vita complesse. Fra i cinque autori dello studio, guidato da Tsvi Piran del Racah Institute of Physics di Gerusalemme, c’è anche la cosmologa italiana Licia Verde, professoressa di fisica e astronomia alle università di Oslo e di Barcellona. Media INAF l’ha intervistata.
Professoressa Verde, il vostro studio propone uno scenario con una potenziale vittima, la vita, e due attori protagonisti: la costante cosmologica e i GRB. Chi è il buono, chi il cattivo? E perché?
«Entrambi gli attori recitano un ruolo sia buono che cattivo. Proprio come nella vita fuori da Hollywood, o come in un documentario sugli animali stile David Attenborough. I GRB provengono da esplosioni di stelle massive. Queste esplosioni, se avvengono troppo vicino a casa, rilasciano radiazione fatale per la vita “avanzata” – ovvero, una vita tale da produrre un osservatore. Non dimentichiamo però che sono proprio le esplosioni di stelle massive ad arricchire il mezzo interstellare di elementi “pesanti” (ferro, ossigeno…), indispensabili per formare i pianeti e  la vita.
Quanto alla costante cosmologica, è da anni che si sa che se è troppo grande risulta “cattiva”, perché impedisce alla gravità di far bene il suo lavoro: formare strutture come le galassie, le stelle, i pianeti, eccetera. Però dal nostro studio risulta che nemmeno una costante cosmologica troppo piccola aiuta: le galassie rimangono troppo vicine l’una all’altra, cosicché la radiazione di un “GRB killer” può raggiungere facilmente pianeti che ospitano la vita, con conseguenze negative per la vita stessa».
Proviamo a tracciare l’identikit d’un “GRB killer”: per esempio, a che distanza dovrebbe trovarsi, per ucciderci?
«È difficile dare una risposta esatta, è una di quelle domande a cui è più facile rispondere con la statistica – cioè calcolando la probabilità per tutti i possibili pianeti simili alla Terra mai esistiti nell’universo – che non per il caso specifico. Però i numeri non mentono, quindi vediamo alcuni numeri. Un “long duration GRB” fra quelli più energetici (il 10 percento dei più energetici), a una distanza di 50 Kpc – vale a dire, attorno ai 150 mila anni luce, grosso modo la distanza che ci separa dalla Large Magellanic Cloud – distruggerebbe il 90 percento dello strato di ozono.
Lo strato d’ozono è il nostro scudo contro la radiazione ultravioletta, che – oltre alle scottature solari – provoca danni e mutazioni al DNA e rompe le proteine. Quindi non solo provoca il cancro: il danno maggiore che può essere prodotto dalla radiazione ultravioletta è che distrugge la fotosintesi. Di conseguenza, tutto quello che dipende dalla fotosintesi (alghe, plancton…) muore, e così s’interrompe la catena alimentare. È vero che la vita sotto marina è automaticamente protetta dalla radiazione ultravioletta anche senza lo strato di ozono, ma il plancton – che è alla base di tutta la catena alimentare – verrebbe comunque distrutto».
In base alle vostre valutazioni statistiche, quale probabilità abbiamo, noi come specie umana, di venire investiti da un fascio di raggi gamma tale da estinguerci? Nel giro del prossimo milione di anni, diciamo?
«La frequenza, per noi sulla Terra, è stimata attorno a un evento ogni miliardo di anni. Quindi la probabilità, in un milione di anni, è dello 0.1 percento. Ovviamente, niente ci impedisce di pensare di mettere da parte abbastanza ozono “in bombolette” per rilasciarlo nell’atmosfera nel caso improbabile e sfortunato che un simile evento si verifichi…».
E in passato, in base ai vostri calcoli, quanto è probabile che i GRB abbiano avuto un ruolo nelle grandi estinzioni avvenute sulla Terra?
«Non sono i nostri calcoli a dirlo: è risaputo che l’estinzione Ordoviciana (responsabile della scomparsa dell’85% di tutte le specie esistenti al momento sulla Terra) fu dovuta, molto probabilmente, a uno di questi eventi. Nonostante ciò, la vita intelligente s’è sviluppata lo stesso, certo, ma se fosse accaduto più tardi…».
Torniamo alla costante cosmologica: dalle vostre conclusioni, pare di capire che viviamo nel migliore degli universi possibili, o quasi. È così?
«Sì, ma non è così sorprendente. Non vediamo una costante cosmologica troppo grande, perché se fosse troppo grande non ci sarebbero state galassie, stelle e pianeti per sviluppare una vita abbastanza complessa da puntare un telescopio al cielo e dire “oibò vedo una costante cosmologica!”. E non vediamo una costante cosmologica troppo piccola perché, se fosse troppo piccola, sarebbe stato più probabile ritrovarsi fritti per colpa di qualche GRB… Se un’estinzione tipo quella Ordoviciana fosse avvenuta all’epoca, per esempio, degli antichi greci o degli egizi, certamente non avremmo avuto un Galileo a puntare il telescopio al cielo».
Visto che viviamo in un universo in continuo mutamento, quale periodo della sua storia sarebbe il più favorevole allo sviluppo della vita?
«È un calcolo che nel nostro studio non facciamo, ci limitiamo a considerare diversi valori della costante cosmologica. Però si può tentare una “traduzione” qualitativa in termini di periodi della storia dell’universo. Facendo questa traduzione – approssimata – possiamo dire che, in un certo senso, sì: troppo nel futuro, e si saranno spente le stelle capaci di sostenere pianeti simili alla Terra; troppo nel passato, e ci sono troppi GRB pericolosamente vicini… Ma non è una sorpresa, anzi: ci aspettiamo di trovarci in un periodo particolarmente favorevole a noi, altrimenti, statisticamente parlando, non saremmo qui».
Dunque siete d’accordo con i sostenitori del principio antropico? È un universo a nostra misura, quello in cui ci troviamo?
«Quello che diciamo è che vediamo un processo di selezione. Se vediamo un universo “a nostra misura” è perché, se non lo fosse, molto probabilmente non saremmo qui a osservarlo».
di Marco Malaspina (INAF)

Il cielo di marzo: la rivincita di Polluce

Nella coppia di gemelli più famosa della mitologia e dell’astronomia, è sempre stato il numero due. Polluce infatti viene usualmente nominato dopo Castore. E così anche Johann Bayer, autore del primo atlante celeste completo, assegnò a Polluce la beta (β), seconda lettera dell’alfabeto greco, e a Castore la prima, ovvero alfa (α), per designare le stelle principali della costellazione dei Gemelli. Dunque sembrerebbe che Castore sia più luminosa di Polluce, ma in realtà le cose non sono proprio così. Anzi, tra le due, è proprio Polluce a essere la stella più brillante dei Gemelli, ben visibile in queste sere di marzo, alta verso ovest. Polluce è una stella gigante, circa nove volte più grande del nostro Sole e con una massa del settanta per cento maggiore. La sua distanza da noi di 34 anni luce la rende la stella gigante più vicina alla Terra. Rispetto alla nostra stella, Polluce è circa trenta volte più luminosa, ma la sua temperatura superficiale è inferiore di mille gradi.

Polluce

Una decina di anni fa, inoltre, è stato scoperto che attorno a Polluce si trova un pianeta di massa pari a circa 2 volte e mezzo quella di Giove. La sua distanza dalla stella madre è poco più di una volta e mezzo quella che separa la Terra dal Sole, e il pianeta compie un’orbita completa, che è quasi esattamente circolare, in 590 giorni. Ma oltre Polluce, nel cielo serale di marzo c’è molto altro da ammirare, anche solo ad occhio nudo: Giove ad esempio, che sarà ben visibile dal far della sera fino alle prime luci dell’alba. Ma anche delle interessanti congiunzioni della Luna. Siete curiosi di sapere dove e quando? Allora non dovete far altro che guardare il video su Media Inaf.
di Marco Galliani (INAF)

E.T. parla, ma nessuno lo ascolta

Telefono. Casa. La bambina che fu Drew Barrymore osserva incredula un buffo alieno dall’indice luminescente, mentre compone un lunghissimo numero di telefono, in una scena che è passata alla storia del cinema: E.T. l’extraterrestre. 1982, Steven Spielberg alla regia.
Ma cosa succederebbe se E.T. fosse stufo di stare attaccato a un ricevitore, mentre qui, da noi, il telefono suona a vuoto e nessuno risponde? La domanda al limite della realtà se la sono posta i ricercatori della McMaster University: non va escluso che l’intelligenza extraterrestre esista e stia cercando di mettersi in contatto con noi. Meglio prestare bene attenzione ai deboli segnali che giungono alle nostre orecchie elettroniche dalla periferia della Galassia.
Sarebbe un peccato trovarsi fuori campo mentre una forma intelligente di vita extraterrestre cerca di mettersi in contatto con noi.
Il punto di partenza è elementare: René Heller e Ralph Pudritz della McMaster sostengono che la concreta opportunità di trovare un segnale proveniente dall’esterno si basi sulla condivisibile considerazione che E.T. stia cercandoci con gli stessi strumenti in nostro possesso. Qui da noi, sulla Terra, astrofisici e ricercatori stanno concentrando i loro sforzi su pianeti e lune troppo lontani perché possano essere visti direttamente. Lo studio degli esopianeti passa dal monitoraggio dei transiti di questi lontani corpi celesti di fronte alla loro stella ospite.
Dalla misurazione della variazione della luminosità di una stella durante il transito di un pianeta di fronte al disco (prendendo a riferimento il nostro punto di vista di un lontano sistema planetario), gli scienziati possono desumere una serie di importantissime informazioni, senza mai vedere direttamente un mondo alieno. Stimano l’illuminazione media fornita al pianeta, la temperatura sulla sua superficie. A oggi sono decine i corpi su cui gli scienziati ipotizzano possano verificarsi condizioni favorevoli alla crescita e allo sviluppo della vita (vedi Media INAF).
Nello studio in corso di pubblicazione su Astrobiology, Heller e Pudritz rovesciano la prospettiva e si chiedono: potrebbe un’intelligenza aliena aver scoperto l’esistenza della Terra con lo stesso metodo dei transiti cui ricorrono regolarmente gli astronomi oggigiorno?
Se E.T. va a caccia di esopianeti come facciamo noi, e se per farlo si affida al metodo dei transiti, allora è meglio prestare bene attenzione ai posti da cui si ha una bella vista sul Sole e transito della Terra sul disco solare.
«È impossibile sapere se gli extraterrestri utilizzino o meno le nostre tecnologie per scrutare l’Universo», spiega Heller. «Certo devono fare i conti con gli stessi principi fisici che valgono per noi, e il sistema dei transiti è un buon metodo per portare a casa validi risultati». Ora, la zona di transito della Terra sul disco del Sole si offre a un pubblico di circa 100mila potenziali bersagli. Un numero destinato a crescere mano a mano che la nostra capacità di osservare il cielo viene incrementata e migliorata. «Se qualcuno di questi bersagli ospita vita intelligente, ebbene questa potrebbe averci individuati da tempo e un eventuale messaggio dallo spazio potrebbe essere già stato trasmesso in direzione Terra», spiega Pudritz.
Resta da capire se la telefonata da E.T. sia o meno già arrivata alle nostre orecchie. Speriamo di saper prestare la giusta attenzione a questi deboli segnali interstellari. E che la chiamata non sia addebitata al destinatario.
di Davide Coero Borga (INAF)

Vuoti cosmici? Non proprio

Sappiamo che l’Universo è dominato da materia invisibile, quella che gli astronomi chiamano materia oscura, mentre la struttura su larga scala è caratterizzata dalle galassie che sono concentrate in strutture a forma di filamenti che si estendono lungo l’estremità di enormi vuoti cosmici. Nonostante queste strutture siano state considerate quasi prive di materia, un gruppo internazionale di astronomi ritiene che questi vuoti potrebbero contenere almeno il 20 percento della materia ordinaria e che le galassie rappresenterebbero soltanto 1/500 del volume dell’Universo. I risultati di questo studio, guidato da Markus Haider dell’Institute of Astro and Particle Physics dell’Università di Innsbruck in Austria, sono riportati su Monthly Notices of the Royal Astronomical Society (MNRAS).
Nel corso degli ultimi anni, le osservazioni realizzate dai satelliti COBE, WMAP e Planck sulla radiazione cosmica di fondo hanno permesso di affinare gradualmente la nostra comprensione sul contenuto materia-energia dell’Universo: le misure più recenti indicano che il 4,9% è costituito da materia ordinaria o barionica, cioè la materia che compone le stelle, i pianeti e persino noi stessi, che il 26,8% è dovuto all’enigmatica materia oscura e che il rimanente 68,3% è costituito da una componente ancora più misteriosa chiamata energia oscura.
All’informazione ottenuta dalle missioni spaziali si è aggiunta progressivamente quella fornita dagli osservatori terrestri, che hanno permesso di mappare su grandi volumi di spazio la posizione delle galassie, e indirettamente della materia oscura, mostrando che esse sono distribuite lungo strutture a filamenti che formano la cosiddetta “ragnatela cosmica”. Haider e il suo team hanno studiato tutto questo in dettaglio facendo uso dei dati del progetto Illustris, una imponente simulazione numerica che tenta di ricostruire la formazione e l’evoluzione delle galassie, con l’obiettivo di misurare la massa e il volume delle strutture a filamenti e delle galassie ivi contenute.
La simulazione, che riproduce uno spazio a forma di cubo di lato pari a 350 milioni di anni luce, inizia quando l’Universo aveva un’età di appena 12 milioni di anni e traccia l’evoluzione della distribuzione della materia, soggetta alle reciproche interazioni gravitazionali, osservando come essa abbia modificato nel corso del tempo la struttura cosmica fino ai nostri giorni. Inoltre, nella simulazione si tiene conto non solo della materia ordinaria ma soprattutto della materia oscura, che produce l’effetto più importante in termini dell’attrazione gravitazionale.
L’analisi dei dati suggerisce che la metà circa della massa totale presente nell’Universo si trova dove risiedono le galassie, cioè compressa in un volume di spazio pari allo 0,2% dell’Universo che vediamo oggi; un ulteriore 44% è presente nelle strutture a filamenti mentre il 6% è invece situata nei vuoti cosmici, che rappresentano l’80% del volume. Cosa più interessante è che secondo i ricercatori un’inaspettata frazione della materia ordinaria, stiamo parlando del 20%, deve essere stata trasferita molto probabilmente verso i vuoti cosmici. I principali indiziati di questo processo sembrano essere i buchi neri supermassivi che risiedono nei nuclei delle galassie. Parte della materia che precipita verso i buchi neri viene convertita in energia. A sua volta, questa energia viene trasferita al gas circostante determinando così la formazione di enormi flussi di materia che si estendono per centinaia di migliaia di anni luce a partire dai buchi neri, raggiungendo distanze ben al di là delle dimensioni delle rispettive galassie ospiti.
A parte riempire i vuoti con più materia rispetto a quanto ipotizzato in precedenza, questi risultati potrebbero spiegare il cosiddetto “problema della massa mancante di tipo barionico” secondo cui la quantità di materia attesa non sarebbe consistente con quanto predetto dai modelli. «Questa simulazione», spiega Haider, «una delle più sofisticate mai realizzate, suggerisce che i buchi neri che risiedono nel nucleo di ogni galassia ‘aiutino’, per così dire, a trasferire la materia verso le zone più isolate dell’Universo. Ciò che vogliamo fare adesso è affinare il nostro modello e confermare l’attendibilità di questi primi risultati».
Proprio in questi giorni, i ricercatori stanno realizzando tutta una serie di simulazioni i cui risultati dovrebbero essere già disponibili nei prossimi mesi. Gli astronomi cercheranno di capire se, ad esempio, l’attività esercitata dai buchi neri sia davvero consistente con i modelli. Ad ogni modo, qualunque sarà il risultato che emergerà da Illustris, sarà comunque molto complicato osservare materia negli spazi vuoti, essendo quest’ultima molto debole e fredda per emettere raggi X che potrebbero essere rivelati eventualmente dai satelliti.
di Corrado Ruscica (INAF)

Prossimi Articoli più recenti